Skip to main content

Sarcomere Function and Crossbridge Cycling

  • Chapter
Molecular and Subcellular Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 382))

Abstract

The power of the heart is dictated by the force development and velocity of shortening (V) of the cardiac sarcomere. Both depend on the amount of Ca++ released by the sarcoplasmic reticulum during the action potential. We have investigated the interrelationship between force (F) sarcomere length (SL) and V and the intracellular Ca++ concentration ([Ca++]i) in trabeculae isolated from the right ventricle of rat heart. Activation of the contractile filaments during a normal heartbeat requires approximately 30 µM Ca++ ions, which rapidly bind to cytosolic ligands. Consequently the [Ca++]i transient detected by intracellular probes is less than 2µM. Length dependent binding of Ca++ to Troponin-C is responsible for the shape of the F-SL relationship. Ca++ ions are bound to Troponin-C long enough to allow the F-SL relationship, and consequently the end-systolic pressure volume relationship in the intact ventricle, to be largely—but not completely—independent of the loading conditions. V increases hyperbolically with decreasing load during contraction against a load. Stiffness studies reveal that the number of attached crossbridges increases in linear proportion to an increase of the external load. At low external loads the V was large enough to induce a substantial viscoelastic load within the sarcomere itself. The F-V relationship of a single crossbridge appeared to be linear after correction for the observed viscoelastic properties of the muscle and for load dependence of the number of crossbridges. Maximal V of sarcomere shortening without an external load (Vo), depends on the level of activation by Ca++ ions because of the internal viscous load. Our studies of the rate of ATP hydrolysis by the actin-activated S1 fragment of myosin suggest that Vo is limited by the detachment rate of the crossbridge from actin. These studies also suggest that the difference between the fast (V1) and slow (V2) myosin iso-enzyme can be explained by a difference in the amino acid domain on S1 involved in binding of the crossbridge to the actin filament.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bers DM.Excitation-Contraction Coupling and Cardiac Contractile Force.Kluwer Academic, Boston/London, 1991.

    Google Scholar 

  2. Bridge JHB, Spitzer KW, Ershler PR. Relaxation of isolated ventricular cardiomyocytes by a voltage-dependent process. Science. 1988;241:823–825.

    Article  PubMed  CAS  Google Scholar 

  3. Carafoli E. Intracellular calcium homeostasis. Ann Rev Biochem. 1987;56:395–433.

    Article  PubMed  CAS  Google Scholar 

  4. Schouten VJA, Deen JK, Tombe PP, Verveen AA. Force-interval relationship in heart muscle of mammals. A calcium compartment model. Biophys J. 1987;51:13–26.

    Article  PubMed  CAS  Google Scholar 

  5. Wohlfart B. Relationship between peak force, action potential duration, and stimulus interval in rabbit myocardium. Acta Physiol Scand. 1979;106:395–409.

    Article  PubMed  CAS  Google Scholar 

  6. Backx PH, ter Keurs HEDJ. Fluorescent properties of rat cardiac trabeculae microinjected with fura-2 salt.Am J Physiol (Heart Circ Physiol). 1993;264: H1098–H1110.

    CAS  Google Scholar 

  7. Wier WG, Yue DT. Intracellular calcium transients underlying the short-term force-interval relationship in ferret ventricular myocardium. J Physiol. 1986;376:507–530.

    PubMed  CAS  Google Scholar 

  8. Kentish JC, ter Keurs HEDJ, Ricciardi L, Bucx JJJ, Noble MIM. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Circ Res. 1986;58:755–768.

    Article  PubMed  CAS  Google Scholar 

  9. Hofmann PA, Fuchs F. Bound calcium and force development in skinned cardiac muscle bundles: Effect of sarcomere length. J Mol Cell Cardiol. 1988;20:667–677.

    Article  PubMed  CAS  Google Scholar 

  10. Morris GL. The regulatory interaction between phospholamban and SR (Ca++-Mg++) ATPase. Ph.D. Thesis, The University of Calgary, 1993.

    Google Scholar 

  11. ter Keurs HEDJ, Kentish JC, Bucx JJJ. On the force-length relation in myocardium. In: ter Keurs HEDJ, Tyberg JV, eds. Mechanics of the Circulation. Dordrecht, The Netherlands: Martinus Nijhoff, 1987; 91–105.

    Chapter  Google Scholar 

  12. Sagawa K, Suga H, Shoukas AA, Bakalar KM. End-systolic pressure-volume ratio: a new index of ventricular contractility. Am J Cardiol. 1977;40:748–753.

    Article  PubMed  CAS  Google Scholar 

  13. Sagawa K, Maughan L, Suga H, Sunagawa K. Cardiac Contraction and the Pressure-Volume Relationship. New York/Oxford: Oxford University Press; 1988: 139–143

    Google Scholar 

  14. Patterson SW, Piper H, Starling EH. The regulation of the heart beat. J Physiol (London). 1914;48:465–513.

    CAS  Google Scholar 

  15. Starling EH. Human Physiology. Philadelphia/New York: Lea and Febiger; 1912: 880–884, 909-9

    Google Scholar 

  16. Daniels M, Noble MIM, ter Keurs HEDJ, Wohlfart B. Velocity of sarcomere shortening in rat cardiac muscle: Relationship to force, sarcomere length, calcium and time. J Physiol. 1984;355:367–381.

    PubMed  CAS  Google Scholar 

  17. de Tombe PP, ter Keurs HEDJ. Lack of effect of isoproterenol on unloaded velocity of sarcomere shortening in rat cardiac trabeculae. Circ Res. 1991;68:382–391.

    Article  PubMed  Google Scholar 

  18. de Tombe PP, ter Keurs HEDJ. Sarcomere dynamics in cat cardiac trabeculae. Circ Res. 1991;68:588–596.

    Article  PubMed  Google Scholar 

  19. Martyn DA, Rondinone JF, Huntsman LL. Myocardial segment velocity at a low load: Time, length, and calcium dependence. Am J Physiol. 1983;244:H708–H714.

    PubMed  CAS  Google Scholar 

  20. Woledge RC, Curtin NA, Homsher E. Energetic Aspects of Muscle Contraction. London: Academic Press, 1985.

    Google Scholar 

  21. Lehman W. Thick-filament-linked calcium regulation in vertebrate striated muscle. Nature. 1978;274:80–81.

    Article  PubMed  CAS  Google Scholar 

  22. Gulati J, Babu A. Contraction kinetics of intact and skinned frog muscle fibers and degree of activation. J Gen Physiol. 1985;86:479–500.

    Article  PubMed  CAS  Google Scholar 

  23. Chiu YL, Ballou EW, Ford LE. Force, velocity and power changes during normal and potentiated contractions of cat papillary muscles. circ Res. 1987;60:446–458.

    Article  PubMed  CAS  Google Scholar 

  24. Tsuchiya T. Passive interaction between sliding filaments in the osmotically compressed skinned muscle fibers of the frog. Biophys J. 1988;53;415–423.

    Article  PubMed  CAS  Google Scholar 

  25. Chiu YL, Ballou EW, Ford LE. Velocity transients and viscoelastic resistance to active shortening in cat papillary muscle. Biophys J. 1982;40:121–128.

    Article  PubMed  CAS  Google Scholar 

  26. Noble MIM. The diastolic viscous properties of cat papillary muscle. Circ Res. 1977;40:288–292.

    Article  PubMed  CAS  Google Scholar 

  27. Ford LE, Huxley AF, Simmons RM. Tension responses to sudden length changes in stimulated frog muscle fibers near slack length. J Physiol. 1977;269:441–515.

    PubMed  CAS  Google Scholar 

  28. Ford LE, Huxley AF, Simmons RM. Tension transients during steady shortening of frog muscle fibers. J Physiol. 1985;361:131–150.

    PubMed  CAS  Google Scholar 

  29. Brenner BM, Schoenberg M, Chalovich JM, Greene LE, Eisenberg E. Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Nat Acad Sci. 1982;79:7288–7291.

    Article  PubMed  CAS  Google Scholar 

  30. de Tombe PP, ter Keurs HEDJ. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J Physiol. 1992;454:619–642.

    PubMed  Google Scholar 

  31. Wang K, Wright J. Architecture of the sarcomere matrix of skeletal muscle: Immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol. 1988;107:2199–2212.

    Article  PubMed  CAS  Google Scholar 

  32. Brady AJ. Mechanical properties of isolated cardiac myocytes. Physiological Rev. 1991;71:413–428.

    CAS  Google Scholar 

  33. Julian FJ, Morgan DL. Variation of muscle stiffness with tension during tension transients and constant shortening in the frog. J Physiol. 1981;319:193–203.

    PubMed  CAS  Google Scholar 

  34. Ford LE, Huxley AF, Simmons RM. The relation between stiffness and filament overlap in stimulated frog muscle fibers. J Physiol. 1981;311:219–249.

    PubMed  CAS  Google Scholar 

  35. Haugen P. The stiffness under isotonic releases during a twitch of a frog muscle fibre. In: Sugi H, Pollack GH, eds. Molecular Mechanism of Muscle Contraction. New York: Plenum Press, 1988; 461–469.

    Google Scholar 

  36. Huxley AF. Muscle structure and theories of contraction. Prog in Biophys Chem. 1957;7:255–318.

    CAS  Google Scholar 

  37. Backx PH, ter Keurs HEDJ. Restoring forces in rat cardiac trabeculae. Circulation. 1988;78II:68.

    Google Scholar 

  38. Nguyen TTT, ter Keurs HEDJ, unpublished data, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

ter Keurs, H.E.D.J. (1995). Sarcomere Function and Crossbridge Cycling. In: Sideman, S., Beyar, R. (eds) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol 382. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1893-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1893-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5772-8

  • Online ISBN: 978-1-4615-1893-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics