Skip to main content

Signaling of Ca2+ Release and Contraction in Cardiac Myocytes

  • Chapter
Molecular and Subcellular Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 382))

Abstract

Cross signaling between Ca2+ channel and ryanodine receptor was explored in whole cell clamped rat ventricular myocyte under conditions where global myoplasmic Ca2+ concentrations were strongly buffered by dialyzing the myocytes with high concentrations of Fura 2 and EGTA. Ca2+ channel and ryanodine receptor were respectively activated by a depolarizing pulse to -10 mV and rapid (<50 ms) application of 5 mM caffeine. Temporal analysis of kinetics of inactivation of Ca2+ channel with respect to the time of application of caffeine pulse provided experimental evidence that signalling between the ryanodine and Ca2+ channel is mediated exclusively through the Ca2+ microdomains surrounding the DHP/ryanodine receptor complex independent of global myoplasmic Ca2+ concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1, 4-dihydropyridine and ryanodine receptors. Circ Res. 1991;68:662–73.

    Article  PubMed  CAS  Google Scholar 

  2. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988;107:2587–600.

    Article  PubMed  CAS  Google Scholar 

  3. Lamb GD. DHP receptors and excitation-contraction coupling. J Musc Res and Cell Motility. 1992;13:394–405.

    Article  CAS  Google Scholar 

  4. Morad M, Goldman Y. Excitation-contraction coupling in heart muscle: Membrane control of development of tension. Prog Biophys Molec Biol 1973;27:257–313.

    Article  Google Scholar 

  5. Morad M, Cleemann L. Role of Ca2+ channel in development of tension in heart muscle. J Mol Cell Cardiol. 1987;19:527–553.

    Article  PubMed  CAS  Google Scholar 

  6. Hodgkin AL, Horowicz P. Potassium contractures in single muscle fibers. J Physiol London. 1960;153:386–403.

    PubMed  CAS  Google Scholar 

  7. Schneider MF, Chandler WK. Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973;242:244–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ringer S. A further contribution regarding the influence of different constituents of blood on contraction of the heart. J Physiol. 1983;4:29–42.

    Google Scholar 

  9. Armstrong CM, Bezanilla FM, Horowicz P. Twitches in the presence of ethylene glycol bis (beta-aminoethyl ether) -N, N’-tetraacetic acid. Biochimica et Biophysica Acta. 1972;267:605–608.

    Article  PubMed  CAS  Google Scholar 

  10. Maylie J, Morad M. A transient outward current related to calcium release and development of tension in elephant seal atrial fibres. J Physiol. 1984;357:267–292.

    PubMed  CAS  Google Scholar 

  11. Baylor SM, Chandler WK. Optical indications of excitation-contraction coupling in striated muscle. In Biophysical Aspects of Cardiac Muscle, M. Morad, ed., Academic Press, New York, pp. 207–228, 1978.

    Chapter  Google Scholar 

  12. Näbauer M, Callewaert G, Cleemann L, Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 1989;244:800–803.

    Article  PubMed  Google Scholar 

  13. Cleemann L, Morad M. Analysis of role of Ca2+ in cadiac excitation-contraction coupling: Evidence from simultaneous measurements of intracellular Ca2+ contraction and Ca2+ current. J Physiol. 1991;432:283–312.

    PubMed  CAS  Google Scholar 

  14. Beuckelmann DJ, Wier WG. Mechanism of release of calcium from sarcoplasmic reticulum of guinea pig cardiac cells. J Physiol. 1988;405:233–255.

    PubMed  CAS  Google Scholar 

  15. Callewaert G, Cleemann L, Morad M. Epinephrine enhances Ca2+ current-regulated Ca2+ release and Ca2+ reuptake in rat ventricular myocytes. Proc Natl Acad Sci USA. 1988;85:2009–2013.

    Article  PubMed  CAS  Google Scholar 

  16. Cannel MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science. 1987;238:1419–1423.

    Article  Google Scholar 

  17. Niggli E, Lederer WJ. Voltage-independent calcium release in heart muscle. Science. 1990;250:565–568.

    Article  PubMed  CAS  Google Scholar 

  18. Fabiato A, Fabiato F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol. 1975;249:469–495.

    PubMed  CAS  Google Scholar 

  19. Näbauer M, Morad M. Ca2+-induced Ca2+-release as examined by photolysis of caged Ca2+ in single ventricular myocytes. Am J Physiol. 1990;258:089–093.

    Google Scholar 

  20. Rousseau E, Meissner G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: Activation by caffeine. Am J Physiol. 1989;256:H328–H333.

    PubMed  CAS  Google Scholar 

  21. Meissner G, Henderson JS. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem. 1987;262:3065–3073.

    PubMed  CAS  Google Scholar 

  22. Smith JS, Coronado R, Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. J Gen Physiol, 1986;88:573–588.

    Article  PubMed  CAS  Google Scholar 

  23. Endo M, Tanaka M, Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970;228:34–36.

    Article  PubMed  CAS  Google Scholar 

  24. Tanabe T, Beam KG, Adams BA, Niidome T, Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990;356:567–569.

    Article  Google Scholar 

  25. Sham JSK, Cleemann L, Morad M. Gating of cardiac release channels by Na+ current and Na+-Ca2+ exchange. Science. 1992;255:850–853.

    Article  PubMed  CAS  Google Scholar 

  26. Sham JSK, Cleemann L, Morad M. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. PNAS. In press 1995.

    Google Scholar 

  27. Beuckelmann DJ, Wier WG. Sodium-calcium exchange in guinea-pig cardiac cells: Exchange current and changes in intracellular Ca2+. J Physiol. 1989;414:499–520.

    PubMed  CAS  Google Scholar 

  28. Leblanc N, Hume JR. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science. 1990;248:372–376.

    Article  PubMed  CAS  Google Scholar 

  29. Lipp P, Niggle E. Na+ current-induced Ca2+ signals in isolated guinea-pig ventricular myocytes. J Physiol. 1994;474:439–446.

    PubMed  CAS  Google Scholar 

  30. Evans AM, Cannell MB. Calcium influx through L-type Ca2+ channels provides the major trigger for Ca2+-induced Ca2+ release in guinea-pig myocytes (abstract). J Physiol. 1994, p. 31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morad, M. (1995). Signaling of Ca2+ Release and Contraction in Cardiac Myocytes. In: Sideman, S., Beyar, R. (eds) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol 382. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1893-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1893-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5772-8

  • Online ISBN: 978-1-4615-1893-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics