Skip to main content

Control and Function of Complex-Type Oligosaccharide Synthesis

Novel Variants of the LacNAc Pathway

  • Chapter
Glycoimmunology

Abstract

Protein N- or O-linked and lipid-linked complex-type oligosaccharide chains are typically based on Ga1β1→4GlcNAc (N-acetyllactosamine, lacNAc) units that serve as backbone structural elements which are built on a core structure (figure 1). Sometimes they contain repeats of these lacNAc units to form so called polylactosaminoglycan chains. These chains are the carriers of terminal, functionally active carbohydrate epitopes such as the sialyl-Lewisx and the oligomeric Lewisx structure. These terminal structures often confer specific biological functions on the glycoconjugates carrying them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.P. Neeleman, W.P.W. Van der Knaap and D.H. Van den Eijnden, Identification and characterization of an UDP-GalNAc:GlcNAcβ-R β1→4-N-acetylgalactosaminyl-transferase from cercariae of the schistosome Trichobilharzia ocellata. Catalysis of a key step in the synthesis of N,N’-diacetyllactosediamino (lacdiNAc)-type glycans, Glycobiology 4: 641–651 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. D.H. Van den Eijnden, A.P. Neeleman, W.P.W. Van der Knaap, H. Bakker, M. Agterberg, M and I. Van Die, Novel glycosylation routes for glycoproteins: the lacdiNAc pathway, Biochem. Soc. Trans. 23: 175–179 (1995).

    PubMed  Google Scholar 

  3. R.G. Spiro and V.D. Bhoyroo, Occurrence of sulfate in the asparagine-linked complex carbohydrate units of thyroglobulin. Identification and localization of galactose 3-sulfate andN-acetylglucosamine 6-sulfate residues in the human and calf proteins, J. Biol. Chem. 263:14351–14358 (1988).

    PubMed  CAS  Google Scholar 

  4. P. De Waard, A. Koorevaar, J.P. Kamerling, and J.F.G. Vliegenthart, Structure determination by 1H-NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase-F, J. Biol. Chem. 266:4337–4343 (1991).

    Google Scholar 

  5. D.H. Joziasse, J.H., D.H. Van den Eijnden, A.J. Van Tunen and N.L. Shaper, Bovine α1,3-galactosyltrans-ferase: Isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA, J. Biol. Chem. 264:14290–14297 (1989).

    PubMed  CAS  Google Scholar 

  6. PL. Smith and J.U. Baenziger, A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones, Science 242:930–933 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. P.L. Smith and J.U. Baenziger, Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase, Proc. Natl. Acad. Sci. USA 89:329–333 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. H. Mulder, B.A. Spronk, H. Schachter, A.P. Neeleman, D.H. Van den Eijnden, M. De Jong-Brink, J.P. Kamerling, and J.F.G. Vliegenthart, Identification of a novel UDP-GalNAc:GalNAcβ-R β1-4-N-ace-tylgalactosaminyltransferase from the albumen gland and connective tissue of the snail, Lymnaea stagnalis, Eur. J. Biochem. 227:175–185 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. H. Schachter and S. Roseman, Mammalian glycosyltransferases. Their role in the synthesis and function of complex carbohydrates and glycolipids, in: “The Biochemistry of Glycoproteins and Proteoglycans”, W.J. Lennarz, ed., Plenum Press, New York, pp. 85–160 (1980).

    Chapter  Google Scholar 

  10. S.M. Dharmesh, T.P. Skelton, and J.U. Baenziger, Co-ordinate and restricted expression of the ProXaaArg/Lys-specific GalNAc-transferase and the GalNAcβ1,4GlcNAcß1,2Man α-4-sulfotrans-ferase,J. Biol. Chem. 268:17096–17102 (1993).

    PubMed  CAS  Google Scholar 

  11. C.A. Rivera Marrero and R.D. Cummings, Schistosoma mansoni contains a galactosyltransferase activity distinct from that typically found in mammalian cells, Mol. Biochem. Parasitol. 43:59–67 (1990).

    Article  Google Scholar 

  12. D.H. Van den Eijnden and D.H. Joziasse, Enzymes associated with glycosylation, Curr. Opin. Struct. Biol. 3:711–721 (1993).

    Article  Google Scholar 

  13. M. Nemansky and D.H. Van den Eijnden, Bovine colostrum CMP-NeuAc:Galβ(1→4)GlcNAc-R α(2→6)-sialyltransferase is involved in the synthesis of the terminal NeuAcα(2→6)Gal-NAcβ(1→4)GlcNAc sequence occurring on N-linked glycans of bovine milk glycoproteins, Biochem. J. 287:311–316 (1992).

    PubMed  CAS  Google Scholar 

  14. C.H. Hokke, J.G. Van der Ven, J.P. Kamerling, and J.F.G. Vliegenthart, Action of rat liver Galß1-4GlcNAc α(2–6)-sialyltransferase on Manβ1-4GlcNAcβ-OMe, GalNAcβ1-4GlcNAcβ-OMe, Glcßl-4GlcNAcß-OMe and GlcNAcβ1-4GlcNAcβ-OMe as synthetic substrates, Glycoconjugate J. 10:82–90 (1993).

    Article  CAS  Google Scholar 

  15. K.B. Wlasichuk, M.A. Kashem, P.V. Nikrad, P. Bird, C. Jiang, and A.P. Venot, Determination of the specificities of rat liver Gal(β1-4)GlcNAc α2,6-sialyltransferase and Gal(β1-3/4)GlcNAc α2,3-sialyl-transferase using synthetic modified acceptors, J. Biol Chem. 268:13971–13977 (1993).

    PubMed  CAS  Google Scholar 

  16. A.A. Bergwerff, J.A. Van Kuik, W.E. Schiphorst, C.A. Koeleman, D.H. Van den Eijnden, J.P. Kamerling, and J.F.G. Vliegenthart, Conversion of GalNAcβ(1–4)GlcNAcβ-OMe into GalNAcβ(1–4)[Fucα(1–3)]GlcNAcβ-OMe using human milk α3/4-fucosyl-transferase. Synthesis of a novel terminal element in glycoprotein glycans, FEBS Lett. 334:133–138 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. T.P. Skelton, L.V. Hooper, V Srivastava, O. Hindsgaul, and J.U. Baenziger, Characterization of a sulfotransferase responsible for the 4-O-sulfation of terminal β-N-acetyl-P-galactosamine on asparagine-linked oligosaccharides of glycoprotein hormones, J. Biol. Chem. 266:17142–17150 (1991).

    PubMed  CAS  Google Scholar 

  18. H. Mulder, H. Schachter, M. de Jong Brink, J.G. Van der Ven, J.P. Kamerling, and J.F.G. Vliegenthart, Identification of a novel UDP-Gal:GalNAcβ1-4GlcNAc-R β1-3-galactosyltransferase in the connective tissue of the snail Lymnaea stagnalis, Eur. J. Biochem. 201:459–465 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. D. Fiete, V. Srivastava, O. Hindsgaul, and J.U. Baenziger, A hepatic reticulo-endothelial cell receptor specific for SO4-4GalNAcβ1,4GlcNAcβ1,2Manα that mediates rapid clearance of lutropin, Cell 67:1103–1110 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. B.W. Grinnell, R.B. Hermann, and S.B. Yan, Human protein C inhibits selectin-mediated cell adhesion: Role of unique fucosylated oligosaccharide, Glycobiology 4:221–225 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. R.T. Damian, Molecular mimicry revisited, Parasitol. Today 3:263–266 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. C. Dissous, J.M. Grzych and A. Capron, Schistosoma mansoni shares a protective oligosaccharide epitope with freshwater and marine snails, Nature 323: 443–445 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. H. Bakker, M. Agterberg, A. Van Tetering, C.A.M. Koeleman, D.H. Van den Eijnden and I. Van Die, A Lymnaea stagnalis gene, with sequence similarity to that of mammalian β1→4-galactosyltransferases, encodes a novel UDP-GlcNAc;GlcNAcβ-R β1→4-N-acetylglucosaminyltransferase, J. Biol. Chem. 26q:30326–30333 (1994).

    Google Scholar 

  24. R.N. Russo, N.L. Shaper, and J.H. Shaper, Bovine β-1,4-galactosyltransferase: two sets of mRNA transcripts encode two forms of the protein with different amino-terminal domains. In vitro translation experiments demonstrate that both the short and the long forms of the enzyme are type II membrane-bound glycoproteins, J. Biol. Chem. 265:3324–3331 (1990).

    PubMed  CAS  Google Scholar 

  25. G. D’Agostaro, B. Bendiak, and M. Tropak, Cloning of cDNA encoding the membrane-bound form of bovine β1,4-galactosyltransferase, Eur. J. Biochem. 183:211–217 (1989).

    Article  PubMed  Google Scholar 

  26. G. Lochnit and R. Geijer, Carbohydrate structure analysis of Batroxobin, a thrombin-like serine protease from Bothrops moojeni venom, Eur. J. Biochem. 228:805–816 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van den Eijnden, D.H., Neeleman, A.P., Van der Knaap, W.P.W., Bakker, H., Agterberg, M., Van Die, I. (1995). Control and Function of Complex-Type Oligosaccharide Synthesis. In: Alavi, A., Axford, J.S. (eds) Glycoimmunology. Advances in Experimental Medicine and Biology, vol 376. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1885-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1885-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5768-1

  • Online ISBN: 978-1-4615-1885-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics