Synthesis and Biological Activity of Oligosaccharide Libraries

  • Y. Ding
  • O. Kanie
  • J. Labbe
  • M. M. Palcic
  • B. Ernst
  • O. Hindsgaul
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 376)


Two of the most difficult problems in Glycobiology are how to discover new biologically-active oligosaccharide ligands and how to enhance the binding affinity of such ligands once they are identified. These are important problems since many examples of physiologically important recognition phenomena are being discovered (Varki, 1993) where the ability to intervene with synthetic carbohydrate-based inhibitors may lead to new modes of therapy for disease. Key targets for drug development include inhibitors of glycosyltrans-ferases which could alter cell surface glycosylation (Hindsgaul et al., 1991) and inhibitors of selectin binding to sialylated and sulfated oligosaccharides which would prevent the inflammatory response (Lasky, 1992).


Human Milk Glycosylation Reaction Library Approach Combinatorial Technology Sulfated Oligosaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Varki, A., 1993, Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97–130.PubMedCrossRefGoogle Scholar
  2. 2.
    Hindsgaul, O., Kaur, K.J., Srivastava, G., Blaszczyk-Thurin, M., Crawley, S.C., Heerze, L.D., and Palcic, M.M., 1991, Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. J. Biol. Chem..., 266: 17858–17862.PubMedGoogle Scholar
  3. 3.
    Lasky L. A., 1992, Selectins: Interpreters of call-specific carbohydrate information during inflammation, Science , 258: 964–969.PubMedCrossRefGoogle Scholar
  4. 4.
    Gallop, M. A., Barrett, R. W., Dower, W. J., Fodor, S. P. A., and Gordon, E. M., 1994, Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries., J. Med. Chem.., 37: 1233–1251.PubMedCrossRefGoogle Scholar
  5. 5.
    Gordon ,E. M., Barrett, R. W., Dower, W. J., Fodor, S. P. A., and Gallop, M. A. 1994, Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions., J. Med. Chem.., 37: 1385–1401.PubMedCrossRefGoogle Scholar
  6. 6.
    Bunin, B. A., Plunkett, J. A., and Ellman, J. A., 1994, The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library., Proc. Natl. Acad. Sci. U.S.A.., 91: 4708–4712.PubMedCrossRefGoogle Scholar
  7. 7.
    Borchardt, A., and Still, C. W., 1994, Synthetic receptor binding elucidated with an encoded combinatorial library., J. Amer. Chem, Soc., 116: 373–374.CrossRefGoogle Scholar
  8. 8.
    Lemieux, R.U., 1994, The chemical mapping of protein-carbohydrate complexes, Alfred Benzon Symposium No. 36 on Complex Carbohydrates in Drug Research, pp. 188–201.Google Scholar
  9. 9.
    Bundle, D.R., Baumann, H., Brisson, J.R., Gagne, S.M., Zdanov, A., and Cygler, M., 1994, The solution structure of a trisaccharide-antibody complex; Comparison of NMR measurements with a crystal structure. Biochemistry 33: 5183–5192.PubMedCrossRefGoogle Scholar
  10. 10.
    Brenner, S., and Lerner, R. A., 1992, Encoded combinatorial chemistry, Proc. Natl. Acad. Sci. U.S.A.., 89: 5381–5383.CrossRefGoogle Scholar
  11. 11.
    Schmidt, R. R., 1986, New methods for the synthesis of glycosides and oligosaccharides. Angew. Chem. Intl. Ed. Engl.., 25: 212–235.CrossRefGoogle Scholar
  12. 12.
    Kanie, O., and Hindsgaul, O., 1992, Synthesis of oligosaccharides, glycolipids and glycoproteins, Curr. Opin. Struct. Biol., 2: 674–681.CrossRefGoogle Scholar
  13. 13.
    Khan, S.H., and Hindsgaul, O., 1994, “Chemical synthesis of oligosaccharides” in Molecular Glycobiology: Frontiers in Molecular Biology, M. Fukuda and O. Hindsgaul, Eds., Oxford University Press, Oxford, UK. pp 206–229.Google Scholar
  14. 14.
    Hindsgaul, O., Norberg, T., LePendu, J., and Lemieux, R.U., 1982, Synthesis of type 2 human blood-group antigenic determinants. The H, X and Y haptens and variations of the H type 2 determinant as probes for the combining site of the lectin I of Ulex Europaeus., Carbohydr. Res., 190:109–142.CrossRefGoogle Scholar
  15. 15.
    Palcic, M.M., Venot, A.P., Ratcliffe, R.M., and Hindsgaul, O., 1989, Enzymatic synthesis of oligosaccharides terminating in the tumor-associated sialyl Lewis-a determinant, Carbohydr. Res., 190, 1–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Palcic, M.M., Heerze, L.D., Pierce, M., and Hindsgaul, O., 1988, The use of hydrophobic synthetic glycosides as acceptors in glycosyltransferase assays, Glycoconjugate J., 5: 49–63.CrossRefGoogle Scholar
  17. 17.
    Lowary, T.L. and Hindsgaul, O., 1993, Recognition of synthetic deoxy and deoxyfluoro analogs of the acceptor α-L-Fucp-(1→2)β-D-Galp-OR by the blood-group A and B gene-specified glycosyltransferases, Carbohydr. Res., 24: 163–195.CrossRefGoogle Scholar
  18. 18.
    Kanie, O., Barresi, F., Otter, A., Forsberg, L. S., Ernst, B., and Hindsgaul, O.1994, Random glycosylation of unprotected carbohydrates: a strategy for the synthesis of α-fucose containing oligosaccharide libraries. Manuscript submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Y. Ding
    • 1
  • O. Kanie
  • J. Labbe
    • 1
  • M. M. Palcic
    • 1
  • B. Ernst
    • 2
  • O. Hindsgaul
    • 1
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada
  2. 2.Section of Carbohydrate Chemistry, Central Research LaboratoryCIBA-GEIGY Ltd.BaselSwitzerland

Personalised recommendations