O-Linked N-Acetylglucosamine: The “Yin-Yang” of Ser/Thr Phosphorylation?

Nuclear and Cytoplasmic Glycosylation
  • Gerald W. Hart
  • Kenneth D. Greis
  • L.-Y. Dennis Dong
  • Melissa A. Blomberg
  • Teh-Ying Chou
  • Man-Shiow Jiang
  • Elizabeth P. Roquemore
  • Doris M. Snow
  • Lisa K. Kreppel
  • Robert N. Cole
  • Frank I. Comer
  • Chris S. Arnold
  • Bradley K. Hayes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 376)

Abstract

O-linked N-acetylglucosamine (O-GlcNAc) was discovered during studies using bovine milk galactosyltransferase to ‘map’ the surface topography on cells of the murine immune system (Torres and Hart, 1984). Later, O-GlcNAc was shown to reside almost exclusively in the nucleus and cytoplasm (Kearse and Hart, 1991b), and to be present in eukaryotes ranging from trypanosomes, yeast, plants, to man, as well as in viruses (Hart et al. 1989; Hart et al. 1994a; Greis and Hart, 1994). We now know that O-GlcNAc is an exceedingly abundant post-translational modification of specific serine/threonine residues of many important nuclear and cytoplasmic proteins (Haltiwanger et al.1992b). Figure 1 lists the O-GlcNAc-bearing proteins identified to date. O-GlcNAc is attached as a monosaccharide and is generally not further modified. The O-GlcNAc turn-over rates are typically many-times that of the polypeptide backbone on which it is found (Chou et al.1992a; Hart and Roquemore, unpublished). The saccharide is attached at sites similar to those also used by the ‘growth-factor’, proline-directed family of kinases (Roach, 1991; Taylor and Adams, 1992). O-GlcNAc-bearing proteins have a diverse range of functions, but are characterized by several common features: 1) They all are also phosphorylated. 2) They typically form specific and regulated multimeric associations with other polypeptides. 3) In several cases, O-GlcNAcylation and phosphorylation appear to be reciprocal events.

Keywords

Tyrosine Electrophoresis Serine Polypeptide Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akey, C.W. and Radermacher, M. 1993,Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy, J. Cell Biol. 122:1–19.PubMedCrossRefGoogle Scholar
  2. Benko, D.M., Haltiwanger, R.S., Hart, G.W. and Gibson, W. 1988,Virion basic phosphoprotein from human cytomegalovirus contains O-linked N-acetylglucosamine,Proc.Natl.Acad.Sci.USA 85:2573–2577.PubMedCrossRefGoogle Scholar
  3. Cadena, D.L. and Dahmus, M.E. 1987,Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II, J.Biol.Chem. 262:12468–12474.PubMedGoogle Scholar
  4. Chou, C.-F., Smith, A.J. and Omary, M.B. 1992a,Characterization and Dynamics of O-Linked Glycosylation of Human Cytokeratin 8 and 18, J.Biol.Chem. 267:3901–3906.PubMedGoogle Scholar
  5. Chou, C.-F., Smith, A.J. and Omary, M.B. 1992b,Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18, J.Biol.Chem. 267:3901–3906.PubMedGoogle Scholar
  6. Chou, C.-F. and Omary, M.B. 1993,Mitotic Arrest-associated Enhancement of O-Linked Glycosylation and Phosphorylation of Human Keratins 8 and 18, J.Biol. Chem. 268:4465–4472.PubMedGoogle Scholar
  7. Corden, J.L. 1990,Tails of RNA polymerase II, TIBS 15:383–387.PubMedGoogle Scholar
  8. Cordes, V.C. and Krohne, G. 1993,Sequential O-glycosylation of nuclear pore complex protein gp62 in vitro, Eur.J.Cell Biol. 60:185–195.PubMedGoogle Scholar
  9. Dong, L.-Y.D., Xu, Z.-S., Chevrier, M.R., Cotter, R.J., Cleveland, D.W. and Hart, G.W. 1993,Glycosylation of Mammalian Neurofilaments. Localization of Multiple O-Linked N-Acetylglucosamine Moieties on Neurofilament Polypeptides L and M, J.Biol.Chem. 268:16679–16687.PubMedGoogle Scholar
  10. Forbes, D.J. 1992,Structure and function of the nuclear pore complex, Annu.Rev.Cell Biol. 8:495–527.PubMedCrossRefGoogle Scholar
  11. Gonzalez, S.A. and Burrone, O.R. 1992,Rotavirus NS26 is Modified by Addition of Single O-Linked Residues of N-Acetylglucosamine, Virology 182:8–16.CrossRefGoogle Scholar
  12. Greis, K., Gibson, W., and Hart, G.W. Site-Specific Glycosylation of the Human Cytomegalovirus Tegument Basic Phosphoprotein (UL32) at Serine 921 and Serine 952. J. Virology 68: in press.Google Scholar
  13. Hagmann, J., Grob, M. and Burger, M.M. 1992,The cytoskeletal protein talin is O-glycosylated, J.Biol.Chem. 267:14424–14428.PubMedGoogle Scholar
  14. Haltiwanger, R.S., Holt, G.D. and Hart, G.W. 1990,Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglu-cosaminyltransferase, J.Biol.Chem. 265:2563–2568.PubMedGoogle Scholar
  15. Haltiwanger, R.S., Blomberg, M.A. and Hart, G.W. 1992a,Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase, J.Biol.Chem. 267:9005–9013.PubMedGoogle Scholar
  16. Haltiwanger, R.S., Kelly, W.G., Roquemore, E.P., Blomberg, M.A., Dong, L.-Y.D., Kreppel, L., Chou, T.-Y. and Hart, G.W. 1992b,Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic, Biochem.Soc.Trans. 20:264–269.PubMedGoogle Scholar
  17. Hanover, J.A. 1992,The nuclear pore: At the crossroads, FASEB J. 6:2288–2295.PubMedGoogle Scholar
  18. Hart, G.W., Haltiwanger, R.S., Holt, G.D. and Kelly, W.G. 1989,Glycosylation in the nucleus and cytoplasm, Annu.Rev.Biochem. 58:841–874.PubMedCrossRefGoogle Scholar
  19. Hart, G.W., Kelly, W.G., Blomberg, M.A., Roquemore, E.P., Dong, L.-Y.D., Kreppel, L., Chou, T-Y., Snow, D. and Greis, K. 1994a, Glycosylation of Nuclear and Cytoplasmic Proteins is as Abundant and as Dynamic as Phosphorylation. In Glyco-and Cellbiology. Springer-Verlag, Berlin pp.91–103.CrossRefGoogle Scholar
  20. Hart, G.W., Kelly, W.G., Blomberg, M.A., Roquemore, E.P., Dong, L.-Y.D., Kreppel, L., Chou, T., Snow, D. and Greis, K. 1994b, Nuclear and Cytoplasmic Glycosylation is Ubiquitous and has the Hallmarks of a Regulatory Modification. In Bock, K. and Clausen, H. (Eds.), Complex Carbohydrates in Drug Research. Munksgaard, Copenhagen, pp.280–290.Google Scholar
  21. Holt, G.D. and Hart, G.W. 1986,The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc, J.Biol.Chem. 261:8049–8057.PubMedGoogle Scholar
  22. Holt, G.D., Snow, CM., Senior, A., Haltiwanger, R.S., Gerace, L. and Hart, G.W. 1987a,SNuclearpore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine, J.Cell Biol. 104:1157–1164.PubMedCrossRefGoogle Scholar
  23. Holt, G.W., Haltiwanger, R.S., Torres, C-R. and Hart, G.W. 1987b,Erythrocytes Contain Cytoplasmic Glycoproteins: O-linked GlcNAc on Band 4.1, J.Biol.Chem. 262:14847–14850.PubMedGoogle Scholar
  24. Ishibashi, M. and Maizel, J.V.,Jr. 1974,The polypeptides of adenovirus. VI. Early and late glycopolypeptides, Virology. 58:345–361.PubMedCrossRefGoogle Scholar
  25. Jackson, S.P. and Tjian, R. 1988,O-Glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation, Cell 55:125–133.PubMedCrossRefGoogle Scholar
  26. Jackson, S.P. and Tjian, R. 1989,Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography, Proc.Natl.Acad.Sci.U.S.A. 86:1781–1785.PubMedCrossRefGoogle Scholar
  27. Kearse, K.P. and Hart, G.W. 1991a,Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins, Proc.Natl.Acad.Sci.USA 88:1701–1705.PubMedCrossRefGoogle Scholar
  28. Kearse, K.P. and Hart, G.W. 1991b,Topology of O-linked N-acetylglucosamine in murine lymphocytes, Arch.Biochem.Biophys. 290:543–548.PubMedCrossRefGoogle Scholar
  29. Kelly, W.G. and Hart, G.W. 1989,Glycosylation of Chromosomal Proteins: Localization of O-Linked N-Ace-tylglucosamine in Drosophila Chromatin, Cell 57:243–251.PubMedCrossRefGoogle Scholar
  30. Kelly, W.G., Dahmus, M.E. and Hart, G.W. 1993,RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc, J.Biol.Chem. 268:10416–10424.PubMedGoogle Scholar
  31. King, I.A. and Hounsell, E.F. 1989,Cytokeratin 13 contains O-glycosidically linked N-acetylglucosamine residues, J.Biol.Chem. 264:14022–14028.PubMedGoogle Scholar
  32. Ku, N.-O. and Bishr Omary, M. 1994,Expression, glycosylation, and phosphorylation of human keratins 8 and 18 in insect cells, Exp.Cell Res. 211:24–35.PubMedCrossRefGoogle Scholar
  33. Laybourn, P.J. and Dahmus, M.E. 1989,Transcription-dependent structural changes in the C-terminal domain of mammalian RNA polymerase subunit IIa/o, J.Biol.Chem. 264:6693–6698.PubMedGoogle Scholar
  34. Lichtsteiner, S. and Schibler, U. 1989,A glycosylated liver-specific transcription factor stimulates transcription of the albumin gene, Cell 57:1179–1187.PubMedCrossRefGoogle Scholar
  35. McClain, D.A., Paterson, A.J., Roos, M.D., Wei, X. and Kudlow, J.E. 1992,Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells, Proc.Natl.Acad.Sci.USA 89:8150– 8154.PubMedCrossRefGoogle Scholar
  36. Mullis, K.G., Haltiwanger, R.S., Hart, G.W., Marchase, R.B. and Engler, J.A. 1990,Relative accessibility of N-acetylglucosamine in trimers of the adenovirus types 2 and 5 fiber proteins, J. Virol. 64:5317–5323.PubMedGoogle Scholar
  37. Privalsky, M.L. 1990,A subpopulation of the avian erythroblastosis virus v-erbA protein, a member of the nuclear hormone receptor family, is glycosylated, J. Virol. 64:463–466.PubMedGoogle Scholar
  38. Reason, A.J., Morris, H.R., Panico, M., Marais, R., Treisman, R.H., Haltiwanger, R.S., Hart, G.W., Kelly, W.G. and Dell, A. 1992,Localization of O-GlcNAc modification on the serum response transcription factor, J.Biol.Chem. 267:16911–16921.PubMedGoogle Scholar
  39. Roach, P.J. 1991,Multisite and hierarchal protein phosphorylation, J.Biol.Chem. 266:14139–14142.PubMedGoogle Scholar
  40. Roquemore, E.P., Chou, T.-Y. and Hart, G.W. 1994,Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins, Methods Enzymol. 230:443–460.PubMedCrossRefGoogle Scholar
  41. Schaufele, F., West, B.L. and Reudelhuber, T.L. 1990,Overlapping Pit-1 and Sp 1 Binding Sites Are Both Essential to Full Rat Growth Hormone Gene Promoter Activity Despite Mutually Exclusive Pit-1 and Sp 1 Binding, J.of Biochem. 265:17189–17196.Google Scholar
  42. Starr, C.M. and Hanover, J.A. 1990,Glycosylation of nuclear pore protein p62. Reticulocyte lysate catalyzes O-linked N-acetylglucosamine addition in vitro, J.Biol.Chem. 265:6868–6873.PubMedGoogle Scholar
  43. Taylor, S.S. and Adams, J.A. 1992,Protein kinases: Coming of age, Curr.Opin.Struct.Biol. 2:743–748.CrossRefGoogle Scholar
  44. Torres, C-R and Hart, G.W. 1984,Topography and Polypeptide Distribution of Terminal N-Acetylglucosamine Residues on the Surfaces of Intact Lymphocytes, J.Biol.Chem. 259,5:3308–3317.Google Scholar
  45. Whitford, M. and Faulkner, P. 1992,A structural polypeptide of the baculovirus Autographa californica nuclear polyhedrosis virus contains O-linked N-acetylglucosamine, J. Virol. 66:3324–3329.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gerald W. Hart
    • 1
  • Kenneth D. Greis
    • 1
  • L.-Y. Dennis Dong
    • 1
  • Melissa A. Blomberg
    • 1
  • Teh-Ying Chou
    • 1
  • Man-Shiow Jiang
    • 1
  • Elizabeth P. Roquemore
    • 1
  • Doris M. Snow
    • 1
  • Lisa K. Kreppel
    • 1
  • Robert N. Cole
    • 1
  • Frank I. Comer
    • 1
  • Chris S. Arnold
    • 1
  • Bradley K. Hayes
    • 1
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations