Skip to main content

Theory of Fluctuating Nonholonomic Fields and Applications: Statistical Mechanics of Vortices and Defects and New Physical Laws in Spaces with Curvature and Torsion

  • Chapter
Formation and Interactions of Topological Defects

Part of the book series: NATO ASI Series ((NSSB,volume 349))

Abstract

We demonstrate the power of using nonholonomic fields in various physical systems. Functional integrals over nonholonomic fields describe the statistical mechanics of defects in crystals and of vortices in superflu-ids and superconductors. Nonholonomic distortions of spacetime transform known physical laws in flat space into hitherto unknown laws in spaces with curvature and torsion, thereby leading to a new quantum equivalence principle for the quantum mechanics in such spaces. A gauge structure inherent in nonholonomic fields is exhibited and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kleinert, Gauge fields in Condensed Matter,Vol. I: Superfiow and Vortex Lines,Disorder Fields, Phase Transitions, Vol. II: Stresses and Defects, Differential Geometry, Crystal Defects, World Scientific, Singapore, 1989.

    Google Scholar 

  2. H. Kleinert, Lett. Nuovo Cimento 35, 405 (1982). See also the more detailed discussion in Ref. [1], Vol I, Part 2, Section13, where the final disorder theory was derived [see, in particular, Eq. (13.30)].

    Google Scholar 

  3. B.I. Halperin, T.C. Lubensky, and S. Ma, Phys. Rev. Lett. 32, 292 (1972).

    Article  ADS  Google Scholar 

  4. M. Kiometzis, H. Kleinert, and A.M.J. Schakel, Phys. Rev. Lett. 73, 1975 (1994).

    Article  ADS  Google Scholar 

  5. M. Gabay and A. Kapitulnik, Phys. Rev. Lett. 71, 2138 (1993).

    Article  ADS  Google Scholar 

  6. S.-C. Zhang, ibid., 2142 (1993).

    Google Scholar 

  7. M.T. Chen, J.M. Roessler, and J.M. Mochel, J. Low Temp. Phys. 89 125 (1992).

    Article  ADS  Google Scholar 

  8. Kleinert, H., Lett. Nuovo Cimento 35 405 (1982).

    Article  MathSciNet  Google Scholar 

  9. D. Nelson, Phys. Rev. B 18, 2318 (1978).

    Article  ADS  Google Scholar 

  10. D. Nelson and B.I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  11. A.P. Young, ibid., 1855 (1979).

    Google Scholar 

  12. D. Nelson, Phys. Rev. B 26 269 (1982).

    Article  ADS  Google Scholar 

  13. W. Janke and H. Kleinert, Phys. Lett. A 105, 134 (1984); Phys. Lett. A 114, 255 (1986).

    Google Scholar 

  14. W. Janke and H. Kleinert, Phys. Rev. Lett. 61 2344 (1988).

    Article  ADS  Google Scholar 

  15. H. Kleinert, Phys. Lett. A 130 443 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics World Scientific Publishing Co., Singapore 1990; extended German edition published by B.I.-Wissenschaftsverlag, Mannheim 1993.

    Google Scholar 

  17. P. Fiziev and H. Kleinert, New Action Principle for Classical Particle Trajectories In Spaces with Torsion, Berlin preprint 1993.

    Google Scholar 

  18. P. Fiziev and H. Kleinert, Action Principle for Euler Equations in Body System, Berlin preprint 1994.

    Google Scholar 

  19. H. Kleinert, Phys. Lett. A 130 (1988).

    Google Scholar 

  20. H. Kleinert and W. Miller, Phys. Rev. Lett. 56, 11 (1986); Phys. Rev. D 38, 1239(1988).

    Google Scholar 

  21. S. Elitzur, Phys. Rev. D 12, 3978 (1975).

    Article  ADS  Google Scholar 

  22. P.A.M. Dirac, Principles of Quantum Mechanics, 4th ed., Clarendon, Cambridge 1981, Section80.

    Google Scholar 

  23. J. Schwinger, Phys. Rev. 115, 721 (1959); 127, 324 (1962).

    Google Scholar 

  24. M. Kiometzis and A.M.J. Schakel, Int. J. Mod. Phys. B 7, 4271 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kleinert, H. (1995). Theory of Fluctuating Nonholonomic Fields and Applications: Statistical Mechanics of Vortices and Defects and New Physical Laws in Spaces with Curvature and Torsion. In: Davis, AC., Brandenberger, R. (eds) Formation and Interactions of Topological Defects. NATO ASI Series, vol 349. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1883-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1883-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5767-4

  • Online ISBN: 978-1-4615-1883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics