Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 349))

  • 276 Accesses

Abstract

In these lectures I will give an introduction to the fascinating problems associated with the growth of order [1, 2] in unstable thermodynamic systems. To set the stage let me begin with the conceptually simplest situation. Consider the phase diagram shown in Fig.1 for a ferromagnetic system in the absence of an externally applied magnetic field. At high temperatures, above the Curie temperature T c ,the average magnetization, the order parameter for this system, is zero and the system is in the paramagnetic phase. Below the Curie temperature, for the simplest case of an Ising ferrromagnet, one has a non-zero magnetization with two possible orientations: the net magnetization can point in say the + z-direction or the - z-direction. There are two degenerate equilibrium states of the system in the ferromagnetic phase. Now consider the experiment where we first prepare the system in an equilibrium high temperature state where the average magnetization is zero. We then very rapidly drop the temperature of the thermal bath in contact with the magnet to a temperature well below the Curie temperature. In this case the magnetic system is rendered thermodynamically unstable. It wants to equilibrate at the new low temperature, but it must choose one of the two degenerate states. Consider the schematic shown in Fig.2 where ψ is the local value of the order parameter and V is the “potential” governing this variable. Clearly the potential and the free energy are minimized by a uniform magnetization with value +ψ 0 and -ψ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Gunton, M. San Miguel and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, eds. C. Domb and J. L. Lebowitz (Academic, New York, 1983) p. 267.

    Google Scholar 

  2. A. Bray, to appear in Advances in Physics (1994).

    Google Scholar 

  3. The Monte Carlo method is discussed in detail in K. Binder and D. Heermann, Monte Carlo Methods in Statistical Physics: An Introduction,(Springer-Verlag. Heidelberg, 1988). “In [28] the next order (post-Gaussian) approximation for a NCOP is developed and leads to qualitative improvement in the theory in ways described there

    Google Scholar 

  4. A diluted antiferromagnet in a field is an example of the much studied random field Ising model. For references see Z. - W. Lai, G. F. Mazenko, and O. T. Valls, Phys. Rev. B 37, 9481 (1988).

    Google Scholar 

  5. M. Kleman, Points,Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, New York, 1983).

    Google Scholar 

  6. Hashimoto, et al. in Dynamics of Ordering Processes in Condensed Matter, ed. by S. Komura and M. Furukawa (Plenum, New York, 1988).

    Google Scholar 

  7. To see a discussion from this point of view consult G. F. Mazenko, Phys. Rev. D 34 2223 (1986).

    Google Scholar 

  8. See for example, S. Ma and G. F. Mazenko, Phys. Rev. B 11 4077 (1975), for an introduction.

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987).

    MATH  Google Scholar 

  10. T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. B 37, 9638 (1988).

    Article  ADS  Google Scholar 

  11. T. M. Rogers and R. C. Desai, Phys. Rev. B 39 11 956 (1989).

    Google Scholar 

  12. J. D. Gunton and M. Drozi in Introduction to the Dynamics of Metastatle and UnstaHe States, Vol. 183 of Lecture Notes in Physics, edited by J. Zittartz (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  13. S. Nagler et al. Phys. Rev. Lett. 61 718 (1988).

    Article  ADS  Google Scholar 

  14. G. Porod, Kolloid Z. 124 83 (1951); 125 51 (1952). See also G. Porod in Small Angle X-Ray Scattering, ed. by O. Glatter and L. Kratky (Academic, New York, 1982).

    Google Scholar 

  15. H. Tomita, Prog. Theor. Phys. 72 656 (1984); 75 482 (1986).

    Google Scholar 

  16. J. Marro, J. L. Lebowitz and M. Kalos, Phys. Rev. Lett. 43 282 (1979).

    Article  ADS  Google Scholar 

  17. M. Hennion, D. Ronzaud, and P. Guyot, Acta. Metall. 30 599 (1982).

    Article  Google Scholar 

  18. H. Furukawa, J. Phys. Soc. Jpn. 58 216 (1989).

    Article  Google Scholar 

  19. I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 42 1354 (1962) [Sov. Phys. JETP 15 939 (1962)]. S. M. Allen and J. W. Cahn, Acta. Metall. 27, 1085 (1979).

    Google Scholar 

  20. I. M. Lifshitz and V. V. Slyosov, J. Phys. Chem. Solids 19 35 (1961). C. Wagner, Z. Elektrochemie 65 581 (1961).

    Google Scholar 

  21. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28 258 (1958). H. E. Cook, Acta Metall. 18 297 (1970).

    Google Scholar 

  22. J. S. Langer, M. Bar-on, and H. D. Miller, Phys. Rev. A 11 1417 (1975).

    Article  ADS  Google Scholar 

  23. G. F. Mazenko, O.T. Valls and M. Zannetti, Phys Rev. B 40 3676 (1989).

    Google Scholar 

  24. G. F. Mazenko, Phys. Rev. B 42, 4487 (1990).

    Google Scholar 

  25. The separation is fully discussed in G. F. Mazenko, Physica A 204 437 (1994).

    Article  Google Scholar 

  26. T. Ohta, D. Jasnow, K. Kawasaki, Phys. Rev. Lett. 49 1223 (1982).

    Article  ADS  Google Scholar 

  27. A. J. Bray and K. Humayun, Phys. Rev. E 48 1609 (1993).

    Article  ADS  Google Scholar 

  28. G. F. Mazenko, Phys. Rev. E 49 3717 (1994).

    Google Scholar 

  29. F. Liu and G. F. Mazenko, Phys. Rev. B 45 4656 (1992).

    Article  ADS  Google Scholar 

  30. A. J. Bray, J. Phys. A 22 L67 (1989).

    Article  Google Scholar 

  31. K. Humayun and A. J. Bray, J. Phys. A 24 1915 (1991).

    Article  ADS  Google Scholar 

  32. F. Liu and G. Mazenko, Phys. Rev B 44, 9185 (1991).

    Article  ADS  Google Scholar 

  33. T. J. Newman, A. J. Bray, and M. A. Moore, Phys. Rev. B 42 4514 (1990).

    Article  ADS  Google Scholar 

  34. A. Bray and K. Humayun, J. Phys. A 23 5897 (1990).

    Article  ADS  Google Scholar 

  35. S. Puri and C. Roland, Phys. Lett. 151 500 (1990). A. J. Bray and S. Puri, Phys. Rev. Lett. 67, 2760 (1991). H. Toyoki and K. Honda, Prog. Theor. Phys. 78, 237 (1987). F. Liu and G. F. Mazenko, Phys. Rev. B 45, 6989 (1992).

    Google Scholar 

  36. G. F. Mazenko, Phys. Rev. E, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazenko, G.F. (1995). Introduction to Growth Kinetics Problems. In: Davis, AC., Brandenberger, R. (eds) Formation and Interactions of Topological Defects. NATO ASI Series, vol 349. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1883-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1883-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5767-4

  • Online ISBN: 978-1-4615-1883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics