Modulation by Phosphorylation of Microtubule Protein Function in the Development of Neural Processes

  • J. Avila
  • M. D. Ledesma
  • L. Ulloa
  • J. García de Ancos
  • M. García Rocha
  • J. Domínguez
  • C. Sánchez
  • E. Montejo
  • I. Correas
  • Javier Díaz Nido

Summary

The possible role of microtubule associated proteins (MAPs) in the development of cytoplasmic extensions resulting in the appearance of the axon and dendrites is indicated.That role is based in the association of MAPs to microtubules. The association of MAPs to microtubules is mainly modulated by phosphorylation and that association regulates the degree of microtubule stability. The presence of stable microtubules correlates with that of cytoplasmic extensions.

Keywords

Fractionation Serine Proline Neuroblastoma Phospho 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramón y Cajal, S. (1890) A quelle epoque apparaissent les expansions des cellule nerveuses de la moelle epinere du poulet. Anat. Anzerger 5, 609–613.Google Scholar
  2. 2.
    Kirschner, M.W. and Mitchison, T. (1986) Beyond self assembly: from microtubules to morphogenesis. Cell. 45, 329–342.PubMedCrossRefGoogle Scholar
  3. 3.
    Gard, D.L. and Kirschner, M (1985) A polymer dependent increase in phosphorylation of b tubulin accompanies differentiation of a mouse neuroblastona cell line. J. Cell. Biol. 100, 764–774.PubMedCrossRefGoogle Scholar
  4. 4.
    Díaz-Nido, J., Serrano, L., Méndez, E. and Avila, J. (1988) A casein kinase II related activity is involved in phosphorylation of microtubule associated protein MAPIB during neuroblastoma cell differentiation. J. Cell. Biol. 196, 2057–2065.CrossRefGoogle Scholar
  5. 5.
    Díaz-Nido, J., Serrano, L., López-Otin, C., Vandekerchhove, J. and Avila, J. (1990) Phosphorylation of a neuronal-specific b tubulin isotope. J. Biol. Chem. 265, 13949–13954.PubMedGoogle Scholar
  6. 6.
    Serrano, L., Díaz-Nido, J., Wandosell, F. and Avila, J. (1987) Tubulin phosphorylation by casein kinase II is similar to that found in vivo. J. Cell. Biol. 105, 1731–1739.PubMedCrossRefGoogle Scholar
  7. 7.
    Ulloa, L., Díaz-Nido, J. and Avila, J. (1993) Depletion of casein kinase II by antisense oligonucleotide prevents neuritogenesis in neuroblastoma cells. EMBO J. 12, 1633–1640.PubMedGoogle Scholar
  8. Ulloa, L., Avila, J. and Díaz-Nido, J. (1993) Heterogeneity in the phosphorylation of microtubule-associated protein MAP1B during rat brain development. Journal of Neurochemistry. in press.Google Scholar
  9. 9.
    Mansfield, S.G., Díaz-Nido, J., Gordon-Weeks, P.R. and Avila, J. (1992) The distribution and phosphorylation of the microtubule-associated protein MAP1B in growth cones. J. Neurocytol. 21, 1007–1022.Google Scholar
  10. 10.
    Díaz-Nido, J. and Avila, J. (1989) Characterization of proteins immunologically related to brain microtubule-associated protein MAP1B in non-neural cells. J. Cell Sci. 92, 607–620.PubMedGoogle Scholar
  11. 11.
    Lee, G., Cowan, N. and Kirschner, M. (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239, 285–288.PubMedCrossRefGoogle Scholar
  12. 12.
    Goedert, M., Spillantini, M.G., Poiter, M.C., Ulrich, J. and Crowther, R.A. (1989a) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing foor tandem repeats: Differential expression of tau protein mRNAs in human brain. EMBO J. 8, 393–399.PubMedGoogle Scholar
  13. 13.
    Montejo de Garcini, E., Corrochano, L., Wischik, C.M., Díaz-Nido, J., Correas, I. and Avila, J. (1992) Differentiation of neruoblastoma cells correlates with an altered splicing pattern of tau RNA. FEBS Letters. 299, 10–14.CrossRefGoogle Scholar
  14. 14.
    García de Ancos, J., Correas, I. and Avila, J. (1993) Differences in microtubule binding and self-association abilities of bovine brain tau isoforms. J. Biol. Chem. 268, 7976–7982.Google Scholar
  15. 15.
    Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, T.C. Zaidi, M.S., Wisniewski, H.M. and Binder, L.I. (1986a) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA. 83, 4913–4917.PubMedCrossRefGoogle Scholar
  16. 16.
    Ihara, Y., Nukina, N., Miura, R. and Ogawara, M. (1986) Phosphorylated tau protein is integrated into paired helical filamants in Alzheimer’s disease. J. Biochem. 99, 1807–1810.PubMedGoogle Scholar
  17. 17.
    Steiner, B., Mandelkow, E.M., Biernat, J., Gustke, N., Meyer, H.E., Schmidt, B., Mieskes, G., Soling, H.D., Drechsel, D., Kirschner, M.W., Godert, M. and Mandelkow, E. (1990) Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+ -calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9, 3539–3544.PubMedGoogle Scholar
  18. 18.
    Flament, S., Delacourte, A. and Mann, D.M.A. (1990) Phosphorylation of tau proteins: a major event during the process of neurofibrillary degeneration. A comparative study between Alzheimer’s disease and Down’s syndrome. Brain Res. 516, 15–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Ledesma, M.D., Correas, I., Avila, J. and Díaz-Nido, J. (1992) Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer’s disease. FEBS Letters. 308, 218–224.PubMedCrossRefGoogle Scholar
  20. 20.
    Gonzalez, P.J., Correas, I. and Avila, J. (1992) Solubilization and fractionation of paired helical filaments. Neuroscience 50, 491–499.PubMedCrossRefGoogle Scholar
  21. 21.
    Matus, A. (1988) Microtubuel associated proteins. Ann Rev. Neurosci. 11, 29–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Higgins, D., Waxman, A. and Banker, G. (1987) The distribution of microtubule associated protein 2 changes when dendritic growth is induced in rat sympathetic neurons in vitro. Neuroscience 23, 121–130.CrossRefGoogle Scholar
  23. 23.
    Friedrich, P. and Aszodi, A (1991) MAP2: a sensitive crosslinker and adjustable spacer in dendritic architecture. FEBS Letters 295, 5–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Díaz-Nido, J., Serrano, L., Hernandez, M.A. and Avila J. (1990) Phosphorylation of microtubule protein in rat brain at different developmental stages. Comparison with that found in non neuronal cultures. J. Neurochem. 54, 211–222.PubMedCrossRefGoogle Scholar
  25. 25.
    Brugg, B. and Matus, A. (1991) Phosphorylation determines the binding of microtubule associated protein (MAP2) to microtubules in living cells. J. Cell Biol. 114, 735–743.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuyama, S., Terayama, Y. and Matsuyama, S. (1987) Numerous phosphates of microtubule associated protein in living rat brain. J. Biol. Chem. 262, 10886–10892.PubMedGoogle Scholar
  27. 27.
    Díez-Guerra, J. and Avila, J. (1993) MAP2 phosphorylation parallels dendrite arborization in hippocampal neurons in culture. NeuroReport 4, 419–422.PubMedCrossRefGoogle Scholar
  28. 28.
    Baas, P.W., Deitch, J.S., Black, M.M. and Banker, G.A. (1988) Polarity orientation of microtubules in hippocampal neurons: Uniformity in the axon and non uniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335–8339.PubMedCrossRefGoogle Scholar
  29. 29.
    Wille, H., Mandelkow, E.M., Dingus, J., Vallee, R.B., Binder, L. I. and Mandelkow, E. (1992) Domain structure and antiparallel dimers of microtubule associated protein 2. J. Struct. Biol. 108, 46–63.CrossRefGoogle Scholar
  30. 30.
    Kowalski, R.J. and Williams, R.C. (1993) Microtubule associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. J. Biol. Chem. 268, 9847–9855.PubMedGoogle Scholar
  31. 31.
    Dye, R.B., Fink, S.P. and Williams, R.C. (1993) Taxol-induced flexibility of microtubules and its reversal by MAP2 and tau. J. Biol. Chem. 268, 6847–6850.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Avila
    • 1
  • M. D. Ledesma
    • 1
  • L. Ulloa
    • 1
  • J. García de Ancos
    • 1
  • M. García Rocha
    • 1
  • J. Domínguez
    • 1
  • C. Sánchez
    • 1
  • E. Montejo
    • 1
  • I. Correas
    • 1
  • Javier Díaz Nido
    • 1
  1. 1.Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Universidad Autónoma de MadridCantoblanco, MadridSpain

Personalised recommendations