The Haldane Effect Under Different Acid-Base Conditions in Premature and Adult Humans

  • H. Kalhoff
  • F. Werkmeister
  • H. Kiwull-Schöne
  • L. Diekmann
  • F. Manz
  • P. Kiwull
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 361)

Abstract

The Haldane effect (HE) is characterized by the binding of hydrogen ions and CO2 accompanying deoxygenation of hemoglobin (Hb) due to a negative heterotropic allosteric ligand interaction (Bauer, 1974; Siggaard-Andersen, 1974; Baumann et al., 1987). The binding sites of the oxygen-linked hydrogen ions have been mapped for adult hemoglobin (Perutz, 1970; Kilmartin, 1972), being in part responsible for the pH-differences between oxygenated and deoxygenated blood. The question arises whether structural differences of Hb, either among different mammalian species or during developmental life, may influence the quantity of the Haldane effect, at least within the limits of accuracy achieved by blood-gas and acid-base analysis in both basic research and clinical practice.

Keywords

Dioxide Lactate Titration Anemia Syringe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup P. and Schroder, S., 1956, A simple electrometric technique for the determination of carbon dioxide tension in blood and plasma, total content of carbon dioxide in plasma, and bicarbonate content in “separated” plasma at a fixed carbon dioxide tension (40 mmHg), Scand. J. Clin. Lab. Invest. 8:33PubMedCrossRefGoogle Scholar
  2. Bard, H., 1973, Postnatal fetal and adult hemoglobin synthesis in early preterm newborn infants, J. Clin. Invest. 52:1789PubMedCrossRefGoogle Scholar
  3. Bauer, C., 1974, On the respiratory function of haemoglobin, Rev. Physiol. Biochem. Pharmacol. 70:1PubMedCrossRefGoogle Scholar
  4. Bauer, C. and SchrOder, E., 1972, Carbamino compounds of haemoglobin in human adult and foetal blood, J. Physiol. 227:457PubMedGoogle Scholar
  5. Bauer, C., Ludwig, M., Ludwig, I. and Bartels, H., 1969, Factors governing the O2-affmity of human adult and foetal blood, Respir. Physiol. 7:271PubMedCrossRefGoogle Scholar
  6. Baumann, R., Bartels, H. and Bauer, C., 1987, Blood oxygen transport, in: “Handbook of Physiology”, Sect. 3, Vol. IV, L.E. Farhi, S.M. Tenney, eds., Am. Physiol. Soc., Washington, D.C.Google Scholar
  7. Böning, D., Schünemann, H.J., Maassen, N. and Busse, M.W., 1993, Reduction of oxylabile CO2 in human blood by lactate, J. Appl. Physiol. 74:710PubMedGoogle Scholar
  8. Eiring, P., Grote, J. and Rouwen, D., 1988, Influence of hemoglobin oxygen saturation on CO2 and hydrogen ion binding in normal human blood, Pflfigers Arch. 411/1:R 58CrossRefGoogle Scholar
  9. Kalhoff, H., Manz, F., Diekmann, L., Kunz, C., Stock, G.J. and Weisser, F., 1993, Decreased growth rate of low-birth-weight infants with prolonged maximum renal acid stimulation, Acta Paediatr. 82:522PubMedCrossRefGoogle Scholar
  10. Kilmartin, J.V., Fogg, J., Luzzana, M. and Rossi-Bernardi, L., 1973, Role of the α-amino groups of the α -and β-chains of human hemoglobin in oxygen-linked binding of carbon dioxide, J. Biol. Chem. 248:7039PubMedGoogle Scholar
  11. Kiwull-Schöne, H., Gärtner, B. and Kiwull, P., 1987, The effects of CO2 and fixed acid on the O2-Hb affinity of rabbit and cat blood, Pflügers Arch. 408:451PubMedCrossRefGoogle Scholar
  12. Kiwull-Schöne, H., Werkmeister, F. and Kiwull, P., 1992, The Haldane effect under different acid-base conditions, Adv. Exp. Med. Biol. 316:11PubMedCrossRefGoogle Scholar
  13. Klocke, R.A., 1987, Carbon dioxide transport, in: “Handbook of Physiology”, Sect 3, Vol. IV, L.E. Farhi, S.M. Tenney, eds., Am. Physiol. Soc., Washington D.C.Google Scholar
  14. Loeppky, LA., Luft, U.C. and Fletcher, E.R., 1983, Quantitative description of whole blood CO2 dissociation curve and Haldane effect, Respir. Physiol. 51:167PubMedCrossRefGoogle Scholar
  15. v.Mengden, H.J., Schultehinrichs, D. and Thews, G., 1969, Dependence of plasma pH on oxygen satura tion, Respir. Physiol. 6:151CrossRefGoogle Scholar
  16. Müller, R., Grote, J. and Steinhausen, F., 1988, Die CO2-Bindungskurve des normalen menschlichen Blutes und ihre Beeinflussung durch die Oxygenation des Hemoglobins, in: Funktionsanalyse biologischer Systeme, Gustav Fischer Verlag, Stuttgart, New York 18:61Google Scholar
  17. Perutz, M.F., 1970, Stereochemistry of cooperative effects in haemoglobin, Nature 228:726PubMedCrossRefGoogle Scholar
  18. Siggaard-Andersen, O., 1974, “The Acid-Base Status of the Blood”, Munksgaard, CopenhagenGoogle Scholar
  19. Siggaard-Andersen, O. and Engel, K., 1960, A new acid base nomogram, Scand. J. Clin. Lab. Invest. 12:177CrossRefGoogle Scholar
  20. Werkmeister, F., 1992, Der Haldane-Effekt bei respiratorischen und metabolischen Säure-BasenVeränderungen. Eine vergleichende Untersuchung bei verschiedenen Säugetierspezies einschliefilich des Menschen, Diploma-Thesis, Faculty of Biology, Ruhr-University Bochum, GermanyGoogle Scholar
  21. Zwart, A., Kwant, G., Oeseburg, B. and Zijlstra, W.G., 1984, Human whole-blood oxygen affinity: effect of temperature, J. Appl. Physiol. 57:429PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • H. Kalhoff
    • 1
  • F. Werkmeister
    • 2
  • H. Kiwull-Schöne
    • 2
  • L. Diekmann
    • 1
  • F. Manz
    • 3
  • P. Kiwull
    • 2
  1. 1.Pediatric ClinicDortmundGermany
  2. 2.Department of PhysiologyRuhr-UniversityBochumGermany
  3. 3.Research Institute of Child NutritionDortmundGermany

Personalised recommendations