New Approaches in Acoustic Microscopy for Noncontact Measurement and Ultra High Resolution

  • Kazushi Yamanaka
Part of the Advances in Acoustic Microscopy book series (AAMI, volume 1)

Abstract

As an imaging method of elastic properties and subsurface features in microscopic scale, the scanning acoustic microscope (SAM) provides spatial resolution comparable or superior to that of optical microscopes.(1) Nondestructive evaluation methods of defects and elastic properties in microscopic scale were developed by using the SAM,(2–4)and they have been widely applied to various fields in science and technology.(4–7)

Keywords

Quartz Dust Graphite Torque Ferrite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quate, C. F., Atalar, A., Wickramasinghe, H. K. (1979). Acoustic microscopy with mechanical scanning. Proc. IEEE 67, 1092–1114.CrossRefGoogle Scholar
  2. 2.
    Yamanaka, K. and Enomoto, Y. (1982). Observation of surface cracks with the scanning acoustic microscope. J. Appl. Phys. 53, 846–50.CrossRefGoogle Scholar
  3. 3.
    Kushibiki, J. and Chubachi, N. (1985). Material characterization by line-focus beam acoustic microscope. IEEE Trans. SU32, 189–212.Google Scholar
  4. 4.
    Briggs, G. A. D. (1992). Acoustic Microscopy, Clarendon, Oxford, UK.Google Scholar
  5. 5.
    Kushibiki, J. (1990). Acoustic Microscopy in Ultrasonic Spectroscopy, vol. 2 (N. Mikoshiba and A. Ikushima, eds.), pp. 147–87. (Baifu-kan, Tokyo) (in Japanese)Google Scholar
  6. 6.
    Yamanaka, K. (1992). In: Materials and Ultrasonics (R. Sakata, ed.), pp. 127–46. (Shokabo, Tokyo) (in Japanese)Google Scholar
  7. 7.
    Mizuhara, K., Taki, T., Yamanaka, K. (1993). Anomalous cracking of bearing balls under a liquid-butane environment, Tribol. Int. 26, 135–42.CrossRefGoogle Scholar
  8. 8.
    Yamanaka, K., Nagata, Y., Koda, T. (1991). Selective excitation of single-mode acoustic waves by phase velocity scanning of a laser beam. Appl. Phys. Lett. 58, 1591–93CrossRefGoogle Scholar
  9. 9.
    Yamanaka, K., Nagata, Y., Koda, T. (1992). Generation of dispersive acoustic waves by the phase velocity scanning of a laser beam. Review of Progress in Quantitative Nondestructive Evaluation. vol. 11, 633–40.CrossRefGoogle Scholar
  10. 10.
    Nishino, H., Tsukahara, Y., Nagata, Y., Koda, T., Yamanaka, K. (1993). Excitation of high-frequency surface acoustic waves by phase velocity scanning of a laser interference fringe. Appl. Phys. Lett. 62, 2036–38.CrossRefGoogle Scholar
  11. 11.
    Nishino, H., Tsukahara, Y., Nagata, Y., Koda, T., Yamanaka, K. (1993). Generation of 100MHz-band Rayleigh waves by phase velocity scanning of a laser interference fringe. Jpn. J. Appl. Phys. 32, 2536–39.CrossRefGoogle Scholar
  12. 12.
    Caddes, D. E., Quate, C. F., Wilkinson, C. D. W. (1966). Conversion of light to sound by electrostrictive mixing in solids. Appl. Phys. Lett. 8, 309–11.CrossRefGoogle Scholar
  13. 13.
    Yamanaka, K., Kolosov, O., Nagata, Y., Koda, T., Nishino, H., Tsukahara, Y. (1993). Analysis of excitation and coherent amplitude enhancement of surface acoustic waves by the phase velocity scanning method. J. Appl. Phys. 74, 6511–22.CrossRefGoogle Scholar
  14. 14.
    Nishino, H., Tsukahara, Y., Nagata, Y., Koda, T., Yamanaka, K. (1993). Surface acoustic wave generation by phase velocity scanning of laser interference fringes and its application to nondestructive materials evaluation. Submitted to Proceedings of 6th International Symposium on Nondestructive Characterization of Materials, 7–11 June.Google Scholar
  15. 15.
    Hutchins, D. A. and Tam, A. C. (1986). Pulsed photoacoustic materials characterization. IEEE Trans. UFFC 33, 429–49.CrossRefGoogle Scholar
  16. 16.
    Harata, A. and Sawada, T. (1993). Evaluation and imaging of materials using picosecond laser induced ultrasonics. Jpn. J. Appl. Phys. 32, 2188–91.CrossRefGoogle Scholar
  17. 17.
    Tsukahara, Y. (1991). Analysis of the elastic wave excitation in solid plates by phase velocity scanning of a laser beam. Appl. Phys. Lett. 59, 2384–85.CrossRefGoogle Scholar
  18. 18.
    Nishino, H., Tsukahara, Y., Nagata, Y., Koda, T., Yamanaka, K. (1994). Optical probe detection of high-frequency surface acoustic waves generated by phase velocity scanning of laser interference fringes. Jpn. J. Appl. Phys. 33, 3260–64.CrossRefGoogle Scholar
  19. 19.
    Yamanaka, K., Nishino, H., Tsukahara, Y., Nagata, Y., Koda, T. (1993). Selective excitation of bulk and surface acoustic waves by rapid scanning of a laser interference fringe. Proc. Ultrasonics International 93, 807–10.Google Scholar
  20. 20.
    Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61.CrossRefGoogle Scholar
  21. 21.
    Binnig, G., Quate, C. F., Gerber, Ch. (1986). Atomic force microscope. Phys. Rev. Lett. 56, 930–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Takata, K., Hasegawa, T., Hosaka, S., Hosoki, S., Komada, T. (1989). Tunneling acoustic microscope. Appl. Phys. Lett. 55, 1718–20.CrossRefGoogle Scholar
  23. 23.
    Radmacher, M., Tillman, R. W., Fritz, M., Gaub, H. E. (1992). From molecules to cells: Imaging soft samples with the atomic force microscope. Science 257, 1900–05.PubMedCrossRefGoogle Scholar
  24. 24.
    Moreau, A. and Ketterson, J. B. (1992). Detection of ultrasound using a tunneling microscope. J. Appl. Phys. 72, 861–64.CrossRefGoogle Scholar
  25. 25.
    Rohrbeck, W. and Chilla, E. (1992). Detection of surface acoustic waves by scanning force microscopy. Phys. Stat. Sol. A 131, 69–71.CrossRefGoogle Scholar
  26. 26.
    Kolosov, O. and Yamanaka, K. (1993). Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Jpn. J. Appl. Phys. 32, 1095–98.CrossRefGoogle Scholar
  27. 27.
    Yamanaka, K., Kolosov, O., Ogiso, H., Sato, H., Koda, T. (1993). Atomic force microscope with lateral vibration of sample. Proceeding of Japanese Acoustic Society. Spring Meeting, pp. 889–90.Google Scholar
  28. 28.
    Yamanaka, K., Kolosov, O., Ogiso, Y., Sato, H., Koda, T. (1993). Atomic force microscope and sample observation methods in atomic force microscope. Japanese Patent Application Heisei 5- No. 135342 (1993.5.13).Google Scholar
  29. 29.
    Kolosov, O., Ogiso, H., Yamanaka, K. (1993). Ultrasonic force microscope (UFM)-a new approach to a NDE on nanometer scale. Abstract for Internal Research Presentation Meeting of Mechanical Engineering Laboratory, May 12–13, 1993. Tsukuba, Japan, pp. 19–20.Google Scholar
  30. 30.
    Yamanaka, K., Ogiso, H., Kolosov, O. (1994). Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–80.CrossRefGoogle Scholar
  31. 31.
    Yamanaka, K., Ogiso, H., Kolosov, O. (1994). Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope. Jpn. J. Appl. Phys. 33, 3197–3203.CrossRefGoogle Scholar
  32. 32.
    Mate, C. M. (1992). Atomic force microscope study of polymer lubricants of silicon surfaces. Phys. Rev. Lett. 68, 3323–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Kolosov, O., Ogiso, H., Yamanaka, K. (1993). Ultrasonic force microscope (UFM)—a nondestructive evaluation of elastic properties at nanoscale. Proceeding of the Third Japan SAMPE Symposium Dec. 8–10, 1993, Tokyo Japan (Society for advancement of materials and process engineering), pp. 2196–2201.Google Scholar
  34. 34.
    Yamanaka, K., Kolosov, O., Ogiso, H. (1994). Ultrasonic force microscopy of biopolymers at frequencies above 100 MHz. Proceeding of JRDC International Symposium on Nanostructures and Quantum Effects (Research Development Corporation of Japan, Tokyo, 1993), pp. 349–53.Google Scholar
  35. 35.
    Burnham, N. A., Colton, R. J., Pollock, H. M. (1993). Interpretaton of force curves in force microscopy. Nanotechnology 4, 64–80.CrossRefGoogle Scholar
  36. 36.
    Johnson, K. L., Kendall, K., Roberts, A. D. (1971). Surface energy and the contact of elastic solids. Proc. R. Soc. London, A 324, 301–13.CrossRefGoogle Scholar
  37. 37.
    Pashley, M. D. (1984). Further consideration of the DMT model for elastic contact, Colloids and Surf 12, 69–77.CrossRefGoogle Scholar
  38. 38.
    Kolosov, O., Ogiso, H., Tokumoto, H., Yamanaka, K. (1994). Elastic imaging with nanoscale and atomic resolution by ultrasonic force microscopy (UFM). Proceeding of JRDC International Symposium on Nanostructures and Quantum Effects (Research Devevelopment Corporation of Japan, Tokyo, 1993), pp. 345–48.Google Scholar
  39. 39.
    Motomatsu, M., Mizutani, W., Nie H.-Y., Kolosov, O., Yamanaka, K., Tokumoto, T. (unpublished).Google Scholar
  40. 40.
    Yamanaka, K., and Tomita, E. (1995). Lateral force modulation AFM for selective imaging of friction forces. Japan. J. Appl. Phys. 34, to be published.Google Scholar
  41. 41.
    Rabe, U., and Arnold, W. (1994). Acoustic microscope by the atomic force microscopy. Appl. Phys. Lett. 64, 1493–1495.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kazushi Yamanaka
    • 1
  1. 1.Nanotechnology Division, Mechanical Engineering LaboratoryMinistry of International Trade and IndustryIbaraki, 305Japan

Personalised recommendations