Skip to main content

Measuring the Elastic Properties of Stressed Materials by Quantitative Acoustic Microscopy

  • Chapter
Advances in Acoustic Microscopy

Part of the book series: Advances in Acoustic Microscopy ((AAMI,volume 1))

Abstract

Quantitative acoustic microscopy has progressed rapidly since the first observation of oscillations in the acoustic material signature or V(z). The important role of Rayleigh waves was quickly established, and a further crucial step came with the development of line-focus-beam (LFB) lenses, since these allow directional excitation as well as more accurate analysis of the V(z) curve. For some purposes, it is enough to be able to extract the velocity and attenuation of the surface acoustic wave (SAW) from V(z) measurements, and then make qualitative observations about underlying material properties. For example lateral elastic inhomogeneity in piezoelectric wafers used for SAW devices can be detected with high sensitivity. It is often desirable to obtain more quantitative information about the underlying properties. The major challenge is that a change in the measured SAW velocity can result from changes in any number of parameters, such as the elastic constants, density, layer thickness, stress and strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, R. B., Smith, J. F., Lee, S. S. (1983). In: Review of Progress in Quantitative Nondestructive Testing, vol. 2B (D. O. Thompson and D. E. Chimenti, eds.), p. 1339. Plenum Press, New York.

    Chapter  Google Scholar 

  2. King, R. B. and Fortunko, C. M. (1983). Determination of in-plane residual stress states in plates using horizontally polarised shear waves. J. Appl. Phys. 54, 3027–35.

    Article  Google Scholar 

  3. Kino, G. S., Hunter, J. B., Johnson, G. C., Selfridge, A. R., Barnett, D. M., Hermann, G., Steele, C. R. (1979). Acoustoelastic imaging of stress fields. J. Appl. Phys. 50(4), 2607–13.

    Article  Google Scholar 

  4. Dike, J. J. and Johnson, G. C. (1990). Residual stress determination using acoustoelasticity. J. Appl. Mech. 57, 12–7.

    Article  Google Scholar 

  5. Drescher-Krasicka, E. (1993). Scanning acoustic imaging of stress in the interior of solid materials. J. Acoust. Soc. Am. 94, 453–64.

    Article  Google Scholar 

  6. Man, C.-S. and Lu, W.-Y. (1987). Towards an acoustoelastic theory for measurement of residual stress. J. Elast. 17, 159–82.

    Article  Google Scholar 

  7. Man, C.-S., Lu, W.-Y, Gu, Q., Tang, W. L. (1992). Ultrasonic measurements of stress in weakly anisotropic thin sheets. J. Acoust. Soc. Am. 91, 2643–53.

    Article  Google Scholar 

  8. Johnson, G. C. (1981). Acoustoelastic theory for elastic-plastic materials. J. Acoust. Soc. Am. 70, 591–95.

    Article  Google Scholar 

  9. Hirao, M., Fukuoka, H., Hari, K. (1981). Acoustoelastic effect of Rayleigh surface wave in isotropic material. J. Appl. Mech. 48, 119–23.

    Article  CAS  Google Scholar 

  10. Briggs, G. A. D. (1992). Acoustic Microscopy, Oxford University Press, Oxford, UK.

    Google Scholar 

  11. Spencer, A. J. M. (1980). Continuum Mechanics, Longman, London.

    Google Scholar 

  12. Thurston, R. N. (1964). In: Physical Acoustics, vol. IA (W. P. Mason, ed.). Academic Press, London, pp. 1–110.

    Google Scholar 

  13. Brugger, K. (1964). Thermodynamic definition of higher order elastic coefficients. Phys. Rev. 133A, 1611–12.

    Article  Google Scholar 

  14. Truesdell, C. (1961). General and exact theory of waves in finite elastic strain. Arch. Ration. Mech. Anal. 8, 263–304.

    Article  Google Scholar 

  15. Breazeale, M. A. (1972). Ultrasonic studies of the nonlinear properties of solids. Int. J. Nondestr. Test 4, 149–66.

    CAS  Google Scholar 

  16. Breazcale, M. A. (1991). In: Reviews of Progress in Quantitative Nondestructive Evaluation, vol. 10B (D. O. Thompson and D. E. Chimenti, eds.), pp. 1797–1803. Plenum Press, New York.

    Chapter  Google Scholar 

  17. Thurston, R. N. (1965). Effective elastic constants for wave propagation in crystals under stress. J. Acoust. Soc. Am. 37, 348–56.

    Article  Google Scholar 

  18. Pao, Y. H., Sasche, W., Fukukoa, H. (1984). In: Physical Acoustics, vol. XVII (W. P. Mason and R. N. Thurston, eds.), pp. 61–143. Academic Press, New York.

    Google Scholar 

  19. Hayes, M. and Rivlin, R. S. (1961). Surface waves in deformed elastic materials. Arch. Ration. Mech. Anal. 8, 358–80.

    Article  Google Scholar 

  20. Iwashimizu, Y. and Kobori, O. (1978). The Rayleigh wave in a finitely deformed isotropic elastic material. J. Acoust. Soc. Am. 64, 910–16.

    Article  Google Scholar 

  21. Nalamwar, A. L. and Epstein, M. (1976). Surface acoustic waves in strained media. J. Appl. Phys. 47, 43–48.

    Article  CAS  Google Scholar 

  22. Mase, G. T. and Johnson, G. C. (1987). An acoustoelastic theory for surface waves in anisotropic media. J. Appl. Mech. 54, 127–35.

    Article  Google Scholar 

  23. Sklar, Z. (1993). Quantitative acoustic microscopy of coated materials. D. Phil. thesis, Oxford University.

    Google Scholar 

  24. Lim, T. C. and Parnell, G. W. (1969). Character of pseudosurface waves on anisotropic crystals. J. Acoust. Soc. Am. 45, 845–51.

    Article  CAS  Google Scholar 

  25. Adler, E. L. and Sun, I. H. (1971). Observation of leaky Rayleigh waves on a layered half-space. IEEE Trans. SU-16, 181–84.

    Google Scholar 

  26. Viktorov, I. A., Grishchenko, E. K., Kaekina, T. M. (1963). An investigation of the propagation of ultrasonic surface waves at the boundary between a solid and a liquid. Soy. Phys. Acoust. 9, 131–37.

    Google Scholar 

  27. Campell, J. J. and Jones, W. R. (1970). Propagation of surface waves at the boundary between a piezoelectric crystal and a fluid medium. IEEE Trans. SU-17, 71–76.

    Google Scholar 

  28. Parnell, G. W. and Adler, E. L. (1972). In: Physical Acoustics, vol. IX (W. P. Mason and R. N. Thurston, eds.), Academic Press, New York, pp. 35–127.

    Google Scholar 

  29. Kushibiki, J. and Chubachi, N. (1985). Material characterisation by line-focus beam acoustic microscope. IEEE Trans. SU-32, 189–212.

    Google Scholar 

  30. Kushibiki, J., Takahashi, H., Kobayashi, T., Chubachi, N. (1991). Characterization of lithium niobate crystals by line focus beam acoustic microscopy. Appl. Phys. Lett. 58, 2622–25.

    Article  CAS  Google Scholar 

  31. Nuttall, A. H. (1981). Some windows with very good sidelobe behaviour. IEEE Trans. ASSP-29, 84–94.

    Google Scholar 

  32. Mutti, P. (1993). Surface acoustic waves for semiconductor characterization. D. Phil. thesis, Oxford University.

    Google Scholar 

  33. Smith, I. R., Sinclair, D. A., Wickramasinghe, H. K. (1980). Acoustic microscopy of elastic constants. IEEE 1980 Ultrasonics Symposium, IEEE, New York, pp. 677–82.

    Google Scholar 

  34. Liang, K. K., Kino, G. S., Khuri-Yakub, B. T. (1985). Material characterisation by the inversion of V(z). IEEE Trans. SU-32, 213–24.

    Google Scholar 

  35. Yu, Z. and Boseck, S. (1991). Inversion of V(z) data in the scanning acoustic microscope to determine material properties of a layered solid. Optik 88, 73–79.

    Google Scholar 

  36. Atalar, A. (1979). A physical model for acoustic signatures. J. Appl. Phys. 50, 8237–39.

    Article  CAS  Google Scholar 

  37. Biebl, E. M., Russer, P. H., Anemogiannis, K. (1989). SAW propagation on protonexchanged lithium niobate. IEEE 1989 Ultrasonics Symposium, IEEE, New York, pp. 281–84.

    Google Scholar 

  38. Behrend, O. (1991). Mesure des constantes elastiques de couches de surface par ondes de Lamb. Diplome d’ingenieur-physicien, Ecole Polytechnique federale de Lausanne.

    Google Scholar 

  39. Kim, J. O. and Achenbach, J. D. (1992). Line-focus acoustic microscopy to measure anisotropic acoustic properties of thin films. Thin Sol. Fi. 214, 25–34.

    Article  CAS  Google Scholar 

  40. Kim, J. O., Achenbach, J. D., Mirkarimi, P. B., Shinn, M., Barnett, S. A. (1992). Elastic constants of single-crystal transition metal nitride films measured by line-focus acoustic microscopy. J. Appl. Phys. 72, 1805–11.

    Article  CAS  Google Scholar 

  41. Bard, Y. (1974). Nonlinear parameter estimation, Academic Press, London.

    Google Scholar 

  42. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1986).Numerical Recipes, Cambridge University Press, Cambridge.

    Google Scholar 

  43. Gardner, T. N., Elliott, J. C., Sklar, Z., Briggs, G. A. D. (1992). Acoustic microscope study of the elastic properties of fluoroapatite and hydroxyapatite, tooth enamel and bone. J. Biomech. 25, 1265–77.

    Article  PubMed  CAS  Google Scholar 

  44. Lettington, A. H. (1993). Applications of diamondlike carbon thin films. Philos. Trans. Roy. Soc. London A342, 287–96.

    Google Scholar 

  45. Bubenzer, A., Dischler, B., Brandt, G., Koidl, P. (1983). Rf-plasma-deposited amorphous hydrogenated hard-carbon thin films: preparation, properties, and applications. J. Appl. Phys. 54,4590–95.

    Article  CAS  Google Scholar 

  46. Banks, B. A. and Rutledge, S. K. (1982). Ion beam sputter-deposited diamondlike films. J. Vac. Sci. Technol. 21, 807–14.

    Article  CAS  Google Scholar 

  47. Grill, A., Patel, V., Meyerson, B. S. (1990). Optical and tribological properties of heat-treated diamondlike carbon. J. Mater. Res. 5, 2531–37.

    Article  CAS  Google Scholar 

  48. Catherine, Y. (1991). In: Diamond and Diamondlike Films and Coatings (R. E. Clausing, L. L. Horton, J. C. Angus, and P. Koidl, eds.), 193–227. Plenum Press, New York.

    Chapter  Google Scholar 

  49. Sklar, Z. and Briggs, G. A. D. (1994). Elastic constants of amorphous hydrogenated carbon coatings measured by line focus acoustic microscopy. Submitted to Thin Sol. Fi.

    Google Scholar 

  50. Ambartsumyan, S. A. (1964). Theory of anisotropic shells. NASA Technical Translation F-118, Washington, D.C.

    Google Scholar 

  51. Timoshenko, S. P. and Goodier, J. N. (1970). Theory of Elasticity, McGraw-Hill, New York.

    Google Scholar 

  52. Obata, M., Shimada, H., Mihara, T. (1990). Stress dependence of leaky surface wave on PMMA by line-focus beam acoustic microscope. Exp. Mech. 30, 34–39.

    Article  Google Scholar 

  53. Keating, P. N. (1966a). Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. B 145, 637–45.

    Article  CAS  Google Scholar 

  54. Keating, P. N. (1966b). Theory of the third-order elastic constants of diamondlike crystals. Phys. Rev. B 149, 674–78.

    Article  CAS  Google Scholar 

  55. Philip, J. and Breazeale M. A. (1983). Third-order elastic constants and Gruneisen parameters of silicon and germanium between 3 and 300K. J. Appl. Phys. 54, 752–57.

    Article  CAS  Google Scholar 

  56. Landolt, H. and Bornstein, R. (1983). Numerical Data and Functional Relationships in Science and Technology, 17a, 22a (Series III), Springer, Berlin.

    Google Scholar 

  57. Hall, J. J. (1967). Electronic effects in the elastic constants of n-type Silicon. Phys. Rev. 161, 756–61.

    Article  CAS  Google Scholar 

  58. Koike, J. (1993). Elastic instability of crystals caused by static atom displacements-a mechanism for solid-state amorphization. Phys. Rev. B 47, 7700–04.

    Article  Google Scholar 

  59. Massorbio, C. and Pontikis, V. (1992). Percolation model for elastic softening in intermetallic compounds during solid-state amorphization. Phys. Rev. B 45, 2484–87.

    Article  Google Scholar 

  60. Hsieh, H. and Yip, S. (1987). Defect-induced crystal to amorphous transition in an atomistic simulation model. Phys. Rev. Lett. 59, 2760–63.

    Article  PubMed  Google Scholar 

  61. Hsieh, H. and Yip, S. (1989). Atomistic simulation of defect-induced amorphization of binary lattices. Phys. Rev. B 39, 7476–91.

    Article  Google Scholar 

  62. Burnett, P. J. and Briggs, G. A. D. (1986). The elastic properties of ion-implanted silicon. J. Mat. Sci. 21, 1828–36.

    Article  CAS  Google Scholar 

  63. Bhadra, R., Pearson, J., Okamoto, P., Rehn, L. E., Grimsditch, M. (1988). Elastic properties of silicon during amorphization. Phys. Rev. B 38, 12656–59.

    Article  CAS  Google Scholar 

  64. Sharma, R. P., Bhadra, R., Rehn, L. E., Baldo, P. M., Grimsditch, M. (1989). Crystalline to amorphous transformation in GaAs during Kr ion bombardment—a study of elastic behaviour. J. Appl. Phys. 66, 152–55.

    Article  CAS  Google Scholar 

  65. Rehn, L. E., Okamoto, P., Pearson, J., Bhadra, R., Grimsditch, M. (1987). Solid-state amorphization of Zr3Al—evidence of an elastic instability and first-order phase transformation. Phys. Rev. Lett. 26, 2987–90.

    Article  Google Scholar 

  66. Nowacki, W. (1962). Thermoelasticity. Pergamon Press, Oxford, UK.

    Google Scholar 

  67. Lardner, R. W. and Tupholme, G. E. (1986). Nonlinear surface waves on cubic materials. J. Elast. 16, 251–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sklar, Z., Mutti, P., Stoodley, N.C., Briggs, G.A.D. (1995). Measuring the Elastic Properties of Stressed Materials by Quantitative Acoustic Microscopy. In: Briggs, A. (eds) Advances in Acoustic Microscopy. Advances in Acoustic Microscopy, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1873-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1873-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5762-9

  • Online ISBN: 978-1-4615-1873-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics