Skip to main content

Measuring Thin-Film Elastic Constants by Line-Focus Acoustic Microscopy

  • Chapter
Advances in Acoustic Microscopy

Part of the book series: Advances in Acoustic Microscopy ((AAMI,volume 1))

Overview

Determining the elastic constants of anisotropic films deposited on anisotropic substrates from V(z) measurements obtained by using a line-focus acoustic micro­scope is discussed in Chapter 5. The procedure has three essential components: (1) measuring the V(z) curve as a function of direction of wave mode propagation in the thin-film/substrate system at fixed frequency and/or as a function of the frequency or film thickness for a fixed direction, (2) developing a theoreti­cal measurement model for parametric studies of V(z) curves, and (3) obtaining elastic constants by systematically comparing wave-mode velocities obtained from the theoretical model and V(z) measurements. Examples primarily concern transi­tion metal nitride films and superlattice films used as hard protective coatings for softer surfaces. Results are presented for several thin-film/substrate configu­rations. Advantages of the method as well as remaining problems that require further investigation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weglein, R. D. (1979). A model for predicting acoustic material signatures. Appl. Phys. Lett. 34 179–81.

    Article  CAS  Google Scholar 

  2. Weglein, R. D. (1979). SAW dispersion and film thickness measurement by acoustic microscopy. Appl. Phys. Lett. 35 215–17.

    Article  CAS  Google Scholar 

  3. Briggs, A. (1992). Acoustic Microscopy, Oxford University Press, New York.

    Google Scholar 

  4. Kushibiki, J. and Chubachi, N. (1987). Application of LFB acoustic microscope to film thickness measurement. Electr. Lett. 23 652–54.

    Article  Google Scholar 

  5. Kushibiki, J., Ishikawa, T., Chubachi, N. (1990). Cut-off characteristics of leaky Sezawa and pseudo-Sezawa wave modes for thin-film characterization. Appl. Phys. Lett. 57, 1967–69.

    Article  CAS  Google Scholar 

  6. Behrend, O.,Kulik, A., Gremaud, G. (1993). Characterization of thin films using numerical inversion of the generalized Lamb wave dispersion relation. Appl. Phys. Lett. 62 2787–89.

    Article  CAS  Google Scholar 

  7. Weglein, R. D. (1980). Acoustic microscopy applied to SAW dispersion and film thickness measurement. IEEE Trans. Sonics Ultrason. SU-27 82–86.

    Article  CAS  Google Scholar 

  8. Weglein, R. D. and Hanafee, J. E. (1985). Nondestructive detection of Rayleigh wave dispersion in beryllium. Appl. Phys. Lett. 46 347–49.

    Article  CAS  Google Scholar 

  9. Ishikawa, I., Kanda, H., Katakura, K., Semba, T. (1989). Measurement of a damaged layer thickness with reflection acoustic microscope. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 36 587–92.

    Article  CAS  Google Scholar 

  10. Sklar, Z. (1993). Quantitative Acoustic Microscopy of Coated Materials. Ph.D. diss., University of Oxford.

    Google Scholar 

  11. Mirkarimi, P. B., Shinn, M., and Barnett, S. A. (1992). An ultrahigh vacuum, magnetron-sputtering system for the growth and analysis of nitride superlattices. J. Vac. Sci. Technol. A 10 75–81.

    Article  CAS  Google Scholar 

  12. Shinn, M., Hultman, L., and Barnett, S. A. (1992). Growth, structure, and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res. 7 901–11.

    Article  CAS  Google Scholar 

  13. Kundu, T. (1992). A complete acoustic microscopical analysis of multilayered specimens. J. Appl. Mech. 59, 54–60.

    Article  CAS  Google Scholar 

  14. Lee, Y.-C., Kim, J. O., and Achenbach, J. D. (1993). V(z) curves of layered anisotropic materials for the line-focus acoustic microscope. J. Acoust. Soc. Am. 94 923–30.

    Article  Google Scholar 

  15. Somekh, M. G., Bertoni, H. L., Briggs, G. A. D., and Burton, N. J. (1985). A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope. Proc. R. Soc. Lond. A 49 29–51.

    Google Scholar 

  16. Li, Z. L., Achenbach, J. D., and Kim, J. O. (1991). Effect of surface discontinuities on V(z) and V(z,x) for the line-focus acoustic microscope. Wave Motion 14 187–203.

    Article  Google Scholar 

  17. Atalar, A. (1978). An angular spectrum approach to contrast in reflection acoustic microscopy. J. Appl. Phys. 49 5130–39.

    Article  CAS  Google Scholar 

  18. Achenbach, J. D., Ahn, V. S., and Harris, J. G. (1991). Wave analysis of the acoustic material signature for the line-focus microscope. IEEE Trans. Sonics Ultrason. SU-38 380–87.

    Google Scholar 

  19. Brekhovskikh, L. M. (1980). Waves in Layered Media, 2d ed., Academic, New York, Section 3.

    Google Scholar 

  20. Lee, Y.-C. (1994). Line-Focus Acoustic Microscopy for Material Evaluation. Ph.D. diss., North­western University.

    Google Scholar 

  21. Nayfeh, A. H. (1991). Elastic wave reflection from liquid-anisotropic substrate interface. Wave Motion. 14 55–67.

    Article  Google Scholar 

  22. Chimenti, D. E. and Nayfeh, A. H. (1990). Ultrasonic reflection and guided waves in fluid-coupled composite laminates. J. Nondestr. Eval. 9 51–69.

    Article  Google Scholar 

  23. Nayfeh, A. H. (1991). The general problem of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 89 1521–31.

    Article  Google Scholar 

  24. Bertoni, H. L. (1984). Ray optical evaluation of V(z) in a reflection acoustic microscope. IEEE Trans. Sonics Ultrason. SU-31 105–16.

    Article  Google Scholar 

  25. Nayfeh, A. H. and Chimenti, D. E. (1984). Reflection of finite acoustic beams from loaded and stiffened half-space. J. Acoust. Soc. Am. 75 1360–68.

    Article  Google Scholar 

  26. Ahn, V. S., Achenbach, J. D., Li, Z. L., Kim, J. O. (1991). Numerical modeling of the V(z) curve for a thin-layer/substrate configuration. Res. Nondestr. Eval. 3 183–200.

    Google Scholar 

  27. Liu, G. R., Achenbach, J. D., Kim, J. O., Li, Z. L. (1992). A combined finite-element method/ boundary element method technique for V(z) curves of anisotropic-layer/substrate configurations. J. Acoust. Soc. Am. 92 2734–40.

    Article  Google Scholar 

  28. Ahn, V. S., Harris, J. G., Achenbach, J. D. (1992). Numerical analysis of the acoustic signature of a surface-breaking crack. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39 112–18.

    Article  CAS  Google Scholar 

  29. Ahn, V. S. and Achenbach, J. D. (1991). Response of line-focus acoustic microscope to specimen containing a subsurface crack. Ultrason. 29 482–89.

    Article  Google Scholar 

  30. Auld, B. (1979). General electromechanical reciprocity relations applied to the calculation of elastic-wave-scattering coefficients. Wave Motion 1, 3–10.

    Article  Google Scholar 

  31. Parmon, W. and Bertoni, H. L. (1979). Ray interpretation of the material signature in the acoustic microscope. Electron. Lett. 15 684–46.

    Article  Google Scholar 

  32. Kushibiki, J. and Chubachi, N. (1985). Material characterization by line-focus beam acoustic microscope. IEEE Trans. Sonics Ultrason. SU-32 189–212.

    Article  Google Scholar 

  33. Tsukahara, Y., Liu, Y., Neron, C., Jen, C. K., Kushibiki, J. (1994). Singularities in acoustic reflection coefficient near the longitudinal critical angle and their effect to V(z) measurement with line-focus beam acoustic microscope. IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,submitted.

    Google Scholar 

  34. Viktorov, I. A. (1967). Rayleigh and Lamb Waves, Plenum, New York, pp. 46–47.

    Google Scholar 

  35. Kim, J. O. and Achenbach, J. D. (1992). Line-focus acoustic microscopy to measure anisotropic acoustic properties of thin films. Thin Sol. Films 214 25–34.

    Article  CAS  Google Scholar 

  36. Famell, G. W. and Adler, E. L. (1972). In: Physical Acoustics IX (ed. W. P. Mason and R. N. Thurston), pp. 35–127. Academic, New York.

    Google Scholar 

  37. Ewing, W. M., Jardetzky, W. S., Press, F. (1957). Elastic Waves in Layered Media. McGraw-Hill, New York, Section 4.5.

    Google Scholar 

  38. Sezawa, K. (1927). Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces. Bull. Earthquake Res. Inst. Univ. Tokyo 3 1–18.

    Google Scholar 

  39. Weglein, R. D. (1982). Nondestructive film thickness measurement on industrial diamond. Electron. Lett. 18 1003–1004.

    Article  Google Scholar 

  40. Weglein, R. D. (1985). Acoustic micrometrology. IEEE Trans. Sonics Ultrason. SU-32 225–34.

    Article  Google Scholar 

  41. Kushibiki, J., Maehara, H., Chubachi, N. (1982). Measurements of acoustic properties for thin films. J. Appl. Phys. 53 5509–13.

    Article  CAS  Google Scholar 

  42. Kim, J. O., Achenbach, J. D., Mirkarimi, P. B., Shinn, M., Barnett, S. A. (1992). Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. J. Appl. Phys. 72 1805–11.

    Article  CAS  Google Scholar 

  43. Weglein, R. D. and Kim, J. O. (1992). SAW dispersion in diamond films on silicon by acoustic microscopy. Review of Progress in Quantitative Nondestructive Evaluation, vol. 11 (D. O. Thompson and D. E. Chimenti, eds.), pp. 1815–22. Plenum Press, New York.

    Google Scholar 

  44. Famell, G. W. (1970). In: Physical Acoustics VI (W. P. Mason and R. N. Thurston, ed.), pp. 109–66. Academic Press, New York.

    Google Scholar 

  45. Lim, T. C. and Famell, G. W. (1969). Character of pseudosurface waves on anisotropic crystals. J. Acoust. Soc. Am. 45 845–51.

    Article  CAS  Google Scholar 

  46. Achenbach, J. D. and Kim, J. O. (1993). In: Inverse Problems in Engineering Mechanics (M. Tanaka and H. D. Bui, eds.), pp. 265–76. Springer, New York.

    Google Scholar 

  47. Spendley, W., Hext, G. R., Himsworth, F. R. (1962). Sequential application of simplex designs in optimisation and evolutionary operation, Technomet. 4 441–61.

    Article  Google Scholar 

  48. Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. Comput. J. 7 308–13.

    Article  Google Scholar 

  49. Caceci, M. S. and Cacheris, W. P. (1984). Fitting curves to data. Byte 9 (5), 340–62.

    Google Scholar 

  50. Press, W. H. Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1986). Numerical Recipes, Cambridge University Press, New York, Section 10.4.

    Google Scholar 

  51. Anderson, O. L. (1965). In: Physical Acoustics III B (W. P. Mason, ed.), pp. 77–83. Academic Press, New York.

    Google Scholar 

  52. Karim, M. R., Mal, A. K., Bar-Cohen, Y. (1990). Inversion of leaky Lamb wave data by simplex algorithm. J. Acoust. Soc. Am. 88 482–91.

    Article  Google Scholar 

  53. Kim, J. O. and Achenbach, J. D. (1993). In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 12B (D. O. Thompson and D. E. Chimenti, eds.), pp. 1899–1906. Plenum Press, New York.

    Chapter  Google Scholar 

  54. Holleck, H. (1986). Material selection for hard coatings. J. Vac. Sci. Technol. A 4 2661–69.

    Article  CAS  Google Scholar 

  55. Schmid, E. and Boas, W. (1950). Plasticity of Crystals, Hughes, London, pp. 14–21.

    Google Scholar 

  56. Hertzberg, R. W. (1989). Deformation and Fracture Mechanics of Engineering Materials, 3d ed., Wiley, New York, Chap. 1.

    Google Scholar 

  57. Mendik, M., Satish, S., Kulik, A., Gremaud, G., Wachter, P. (1992). Surface acoustic wave studies on single-crystal nickel using Brillouin scattering and scanning acoustic microscope. J. Appl. Phys. 71 2830–34.

    Article  CAS  Google Scholar 

  58. Kim, J. O. and Weglein, R. D. (1994) Comments on surface acoustic wave studies on single-crystal nickel using Brillouin scattering and scanning acoustic microscope. J. Appl. Phys. (in press).

    Google Scholar 

  59. Huang, J. and Achenbach, J. D. (1994). Measurement of material anisotropy by dual-probe laser interferometer. Research in Nondestructive Evaluation 5 225–235.

    Google Scholar 

  60. Lee, Y.-C., Kim, J. O., Achenbach, J. D. (1995) Acoustic microscopy measurement of elastic constants and mass density of solids and thin films •. IEEE Trans. Ultrason Ferroelec. Freq. Contr. (in press).

    Google Scholar 

  61. Mal, A. K., Gorman, M. R., Prosser, W. H. (1992) In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 11B (D. O. Thompson and D. E. Chimenti, eds.), pp. 1451–8. Plenum, New York.

    Google Scholar 

  62. Barnett, S. A. (1993). In: Physics of Thin Films, vol. 17 (M. H. Francombe and J. L. Vossen eds.), pp. 1–77. Academic Press, New York.

    Google Scholar 

  63. Achenbach, J. D. (1975) A Theory of Elasticity with Microstructure for Directionally Reinforced Composites, Springer, New York pp. 21–38.

    Google Scholar 

  64. Grimsditch, M. (1985). Effective elastic constants of superlattices. Phys. Rev. B 31, 6818–19.

    Article  Google Scholar 

  65. Grimsditch, M. and Nizzoli, F. (1986). Effective elastic constants of superlattices of any symme­try. Phys. Rev. B 33, 5891–92.

    Article  Google Scholar 

  66. Akcakaya, E. and Farnell, G. W. (1988). Effective elastic and piezoelectric constants of superlat­tices. J. Appl. Phys. 64 4469–73.

    Article  CAS  Google Scholar 

  67. Akcakaya, E., Farnell, G. W., Adler, E. L. (1990). Dynamic approach for finding effective and piezoelectric constants of superlattices. J. Appl. Phys. 68 1009–12.

    Article  CAS  Google Scholar 

  68. Kim, J. O., Achenbach, J. D., Shinn, M., Barnett, S. A. (1992). Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices. J. Mater. Res. 7 2248–56.

    Article  CAS  Google Scholar 

  69. Kim, J. O., Achenbach, J. D., Mirkarimi, P. B., Barnett, S. A. (1993). Acoustic microscopy measurements of the elastic properties of TiN/(VxNbi -x)N superlattice films. Phys. Rev. B 48 1726–37.

    Article  CAS  Google Scholar 

  70. Kim, J. O., Achenbach, J. D., Shinn, M., Barnett, S. A. (1994). Effective elastic constants of superlattices determined using acoustic microscopy (to be submitted).

    Google Scholar 

  71. Kim, J. O. and Achenbach, J. D. (1993). In: Dynamic Characterization of Advanced Materials, NCA, vol. 16 (P. K. Raju and R. F. Gibson, eds.), pp. 163–70. ASME, New York.

    Google Scholar 

  72. Nakaso, N., Tsukahara, Y., Kushibiki, J. (1988). Evaluation of adhesion of films by V(z) curve method. Jpn. J. Appl. Phys. 28 (Supplement 28–1), 263–65.

    CAS  Google Scholar 

  73. Mal, A. K. and Weglein, R. D. (1988). In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 7B (D. O. Thompson and D. E. Chimenti, eds.), pp. 903–10. Plenum, New York.

    Google Scholar 

  74. Kobayashi, T. Kushibiki, J., Chubachi, N. (1992). Improvement of measurement accuracy of line-focus-beam acoustic microscope system. IEEE Ultrasonics Symposium Proceedings, New York, pp. 739–42.

    Google Scholar 

  75. Kushibiki, J., Wakahara, T., Kobayashi, T., Chubachi, N. (1992). A calibration method of the LFB acoustic microscope system using isotropic standard specimens. IEEE Ultrasonics Symposium Proceedings, New York, pp. 719–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Achenbach, J.D., Kim, J.O., Lee, YC. (1995). Measuring Thin-Film Elastic Constants by Line-Focus Acoustic Microscopy. In: Briggs, A. (eds) Advances in Acoustic Microscopy. Advances in Acoustic Microscopy, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1873-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1873-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5762-9

  • Online ISBN: 978-1-4615-1873-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics