Skip to main content

Measuring Short Cracks by Time-Resolved Acoustic Microscopy

  • Chapter
Book cover Advances in Acoustic Microscopy

Part of the book series: Advances in Acoustic Microscopy ((AAMI,volume 1))

Abstract

Detecting defects, for example cracks, (1) is important in predicting the lifetime of a material. The growth behavior of short cracks(2) plays an essential role in the lifetime of a component, since the lifetime is mainly controlled by the time required for a crack to grow from a certain initial size to about 1 millimeter. Cracks are defined as short when for example the crack length is small compared with the microstructure of the specimen or when the crack is simply shorter than ≈0.5 mm.(3) The growth of short surface breaking cracks can be measured by light microscopy (LM) or scanning electron microscopy (SEM). A common method of studying short cracks is a replica technique based on taking several plastic replicas at various stages of crack growth and subsequently examining these replicas with LM or SEM.(4,5) The disadvantage of these techniques however, is that they give information about crack development only on the surface of the specimen, so that the depth of the crack has to be determined indirectly by assuming the shape of the crack. For long cracks this may be appropriate because a local change in propagation direction does not alter the overall crack geometry on which the driving force of the crack depends.(6–8) However for short cracks, a change in propagation direction can alter the crack geometry significantly and thus change the driving force for the crack propagation. If its size is comparable with the microstructure of the material, a deflection of the crack at a grain boundary can alter the overall crack geometry. To understand the behavior of short cracks, it is therefore necessary to measure their three-dimensional growth. This can be achieved by using acoustic waves, which can penetrate into the material. In this way the crack depth can be measured directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marsh, K. J., Smith, R. A., Ritchie, R. O. (1991). Fatigue Crack Measurement: Techniques and Applications,Engineering Materials Advisory Services Ltd., Warley, West Midlands, UK. Pp. 554.

    Google Scholar 

  2. Miller, K. J. and Miller D. I. Rios, E. R. (1986). The Behaviour of Short Fatigue Cracks,Mechanical Engineering Publications Ltd., London. Pp. 560.

    Google Scholar 

  3. Suresh, S. and Ritchie, R. O. (1984). Propagation of short fatigue cracks. Int. Met. Rev. 29, 444–73.

    Google Scholar 

  4. Nicholls, D. J. and Martin, J. W. (1990). The use of AK when examining microstructure effects on small crack growth. Int. J. Fatigue 12, 469–73.

    Article  CAS  Google Scholar 

  5. Nicholls, D. J. and Martin, J. W. (1990). Small crack growth in the aluminium-lithium alloys 8090 and 8091. Fatigue and fracture of engineering materials structures 13, 83–94.

    Article  Google Scholar 

  6. Suresh, S. (1991). Fatigue of Materials, Cambridge University Press, Cambridge.

    Google Scholar 

  7. Ewalds, H. L. and Wanhill, R. J. H. (1984). Fracture Mechanics, Edward Arnold, London.

    Google Scholar 

  8. Broek, D. (1987). Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, Netherlands.

    Google Scholar 

  9. Yamanaka, K. and Enomoto, Y. (1982). Observation of surface cracks with scanning acoustic microscopy. J. Appl. Phys. 53, 846–50.

    Article  CAS  Google Scholar 

  10. Briggs, G. A. D. (1992). Acoustic Microscopy, Oxford University Press, Oxford.

    Google Scholar 

  11. Somekh, M. G., Bertoni, H. L., Briggs, G. A. D., Burton, N. J. (1985). A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope. Proc. R. Soc. London A 401, 29–51.

    Google Scholar 

  12. Weaver, J. M. R., Daft, C. M. W., Briggs, G. A. D. (1989). A quantitative acoustic microscope with multiple detection modes. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 36, 554–60.

    Article  CAS  Google Scholar 

  13. Sinton, A. M., Briggs, G. A. D., Tsukahara, Y. (1989). Time-resolved acoustic microscopy of polymer coatings. In: Acoustical-Imaging, vol. 17 (H. Shimizu, N. Chubachi, J. Kushibiki, eds.), pp. 210–12. Plenum Press, New York.

    Google Scholar 

  14. Minachi, A., Mould, J., Thompson, R. B. (1993). Beam propagation through a bimetallic weld-A comparison of predictions of Gauss-Hermite beam model and finite element method. J. Nondestr. Eval. 12, 151–58.

    Article  Google Scholar 

  15. Charlesworth, J. P. and Temple, J. A. G. (1989). Engineering Applications of Ultrasonic Time-of-Flight Diffraction, Research Studies Press, Somerset, England.

    Google Scholar 

  16. Ogilvy, J. A. and Temple, J. A. G. (1983). Diffraction of elastic waves by cracks: application to time-of-flight inspection. Ultrason. 21, 259–69.

    Article  Google Scholar 

  17. Chan, K. H. and Bertoni, H. L. (1991). Ray presentation of longitudinal lateral waves in acoustic microscopy. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 38, 27–34.

    Article  CAS  Google Scholar 

  18. Bertoni, H. L. (1984). Ray-optical evaluation of V(z) in the reflection acoustic microscope. IEEE Trans. Sonics Ultrason. SU-31, 105–16.

    Article  Google Scholar 

  19. Achenbach, J. D., Gautesen, A. K., Mendelson, D. A. (1980). Ray analysis of surface wave interaction with an edge crack. IEEE Trans. Sonics Ultrason. SU-27, 124–29.

    Article  Google Scholar 

  20. Kundu, T. and Mal, A. K. (1981). Diffraction of elastic waves by a surface crack on a plate. J. Appl. Mech. 48, 570–76.

    Article  Google Scholar 

  21. Briggs, G. A. D., Jenkins, P. J., Hoppe, M. (1990). How fine a surface crack can you see in a scanning acoustic microscope? J. Microsc. 159, 15–32.

    Article  Google Scholar 

  22. Tew, R. H., Ockendon, J. R., Briggs, G. A. D. (1988). In: Recent Developments in Surface Acoustic Waves (Parker, D. F. and Margin, G. A., eds.), pp. 309–16. Springer, Berlin.

    Chapter  Google Scholar 

  23. Knauss, D., Bennink, D. D., Zhai, T., Briggs, G. A. D., Martin, J. W. (1993). Depth measurement of short cracks with an acoustic microscope. J. Mat. Sci. 28, 4910–17.

    Article  CAS  Google Scholar 

  24. Zhai, T., Bennink, D. D., Knauss, D., Briggs, G. A. D., Martin, J. W. (1993). Depth measurement of short cracks in perspex with the scanning acoustic microscope. Materials Characterization 31, 115–26.

    Article  CAS  Google Scholar 

  25. Silk, M. G. (1979). The transfer of ultrasonic energy in the diffraction technique for crack sizing. Ultrason. 17, 113–21.

    Article  Google Scholar 

  26. Bennink, D. D., Knauss, D., Zhai, T., Briggs, G. A. D., Martin, J. W. (1992). In: Acoustical Imaging, vol. 20 (Y. Wei, ed.), Plenum Press, New York.

    Google Scholar 

  27. Muller, W., Bubeck, E., Gerold, V. (1986). In: Aluminium-Lithium Alloys III, Proceedings of the 3d International Aluminium-Lithium Conference, London, pp. 435–41.

    Google Scholar 

  28. Davidson, D. L. (1988). Small and large fatigue cracks in aluminum alloys. Acta Metall. 36, 2275–82.

    Article  CAS  Google Scholar 

  29. Thompson, R. B., Skillings, B. J., Zachary, L. W., Schmerr, L. W., Buck, O. (1982). In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 2 (D. O. Thompson and D. E. Chimenti, eds.), pp. 325–41, Plenum Press, New York.

    Chapter  Google Scholar 

  30. Thompson, R. B., Fiedler, C. J., Buck, O. (1983). In: Nondestructive Methods for Material Property Determination (C. O. Ruud and R. B. Thompson, eds.), pp. 161–70. Plenum Press, New York.

    Google Scholar 

  31. Navarro, N. (1988). Short and long crack growth: a unified model. Phil. Mag. A 57, 15–36.

    Google Scholar 

  32. Navarro, A. and Navarro D. I., Rios, E. R. (1992). Fatigue crack growth modelling by successive blocking of dislocations. Proc. R. Soc. London A 43, 375–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knauss, D., Zhai, T., Briggs, G.A.D., Martin, J.W. (1995). Measuring Short Cracks by Time-Resolved Acoustic Microscopy. In: Briggs, A. (eds) Advances in Acoustic Microscopy. Advances in Acoustic Microscopy, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1873-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1873-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5762-9

  • Online ISBN: 978-1-4615-1873-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics