Transcription Regulation of Human and Porcine Pepsinogen A

  • G. Pals
  • P. H. S. Meijerink
  • J. Defize
  • J. P. Bebelman
  • M. Strunk
  • F. Arwert
  • A. Timmerman
  • W. H. Mager
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 362)


The gene regulation of pepsinogens is scientifically interesting, because of the high specificity of expression in gastric chief cells. Also from a clinical point of view pepsinogen gene regulation is interesting. Pepsinogen, activated by acid to pepsin, is one of the aggressive factors in the stomach that play a role in peptic ulcer disease (1). A dominantly inherited high pepsinogen A (PGA) output is associated with duodenal ulcer (2). On the other hand, a low production of pepsinogen A appears to be associated with atrophic gastritis and gastric cancer (3). Changes in gene expression of different isozymogens have been demonstrated in Barrett’s oesophagus (4) and gastric cancer (5). Defize et al. (6) showed, that these changes in gene expression may be associated with methylation of DNA. They demonstrated that N-methyl-N’nitro-N-nitrosoguanidine (MNNG), a methylating agent, caused changes in pepsinogen C (PGC) gene expression in rats and in PGA gene expression in cultured human gastric chief cells. In rats the changes in PGC expression were associated with the development of gastric cancer. Other studies have shown hypomethylation of the pepsinogen genes in pepsinogen producing tissue, i.e. fundic mucosa (7,8). A decrease of PG synthesis in gastric tumours was correlated with a different methylation pattern (9).


Promoter Fragment Chief Cell Fundic Mucosa Methylation Sensitive Restriction Enzyme Transient Expression Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.M. Samloff, Peptic ulcer: The many proteinases of aggression, Gastroenterology 96:586–95(1989).PubMedGoogle Scholar
  2. 2.
    J.I. Rotter, I.M. Samloff, G.M. Petersen, Pepsinogen genetics and duodenal ulcer disease, Gut 27:224–226(1986).PubMedCrossRefGoogle Scholar
  3. 3.
    B.D. Westerveld, G. Pals, C.B.H.W. Lamers, J. Defize, J.C. Pronk, R.R. Frants, E.C.M. Ooms, J. Kreuning, P. Kostense, A.W. Eriksson, S.G.M. Meuwissen, Clinical significance of pepsinogen A isozymogens, serum pepsinogen A and C levels and serum gastrin levels, Cancer 59:952–958(1987).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Pals, A.W. Eriksson, J.C. Pronk et al. Differential expression of pepsinogen isozymogens in a patient with Barrett’s oesophagus, Clin Genet 34:90–7(1988).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Pals, B.D. Westerveld, J.C. Pronk, A. Bosma, A.W. Eriksson, S.G.M. Meuwissen, Pepsinogen A isozymogens in normal mucosa and tumor tissue of gastric cancer patients, Neth. J. Med. 28:461–467(1985).Google Scholar
  6. 6.
    J. Defize, J. Derodra, R.H. Hunt, N-methyl-N’nitro-N-nitroso-guanidine induces changes in rat and human pepsinogen phenotypes, Cancer 62:1958–61(1988).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Ichinose, K. Miki, M. Tatematsu, et al. Cell-specific hypomethylation of the pepsinogen gene in pepsinogen-producing cells, Biochem. Biophys. Res. Commun. 155(2):670–7(1988).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Ichinose, K. Miki, M. Tatematsu, et al. Hypomethylation and expression of pepsinogen A genes in the fundic mucosa of human stomach, Biochem. Biophys. Res. Commun. 151:275–82(1988).Google Scholar
  9. 9.
    M. Ichinose, K. Miki, R.N.S. Wong, et al. Methylation and expression of human genes in normal tissues and their alteration in stomach cancer, Jpn. J. Cancer. 82:686–92(1991).CrossRefGoogle Scholar
  10. 10.
    P.H.S. Meijerink, J.P. Bebelman, A.M. Oldenburg, J. Defize, R.J. Planta, A.W Eriksson, G. Pals, W.H. Mager, Gastric chief cell-specific transcription of the pepsinogen A gene, Eur. J. Biochem. 213:1283–9(1993).PubMedCrossRefGoogle Scholar
  11. 11.
    R.T. Taggart, T.K. Mohandas, T.B. Shows, G.I. Bell, Variable numbers of pepsinogen genes are located in the centromeric region of human chromosome 11 and determine the high frequency electrophoretic polymorphism, Proc. Natl. Acad. Sci. 82:6240–4(1985).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Zelle, M.P. Evers, P.C Groot, et al. Genomic structure and evolution of the human pepsinogen A multigene family. Hum Genet 1988;78(l):79–82.PubMedCrossRefGoogle Scholar
  13. 13.
    CM. Gorman, LF. Moffat, B.H. Howard, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Mol. Cell. Biol. 2:1044–51(1982).PubMedGoogle Scholar
  14. 14.
    T. Maniatis, F. Fritsch, J. Sambrook, Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory 1982; Cold Spring Harbor, N.Y.Google Scholar
  15. 15.
    CM. Gorman, High efficiency gene transfer into mammalian cells. In: DM Glover (ed), DNA cloning, vol 11. IRL press Oxford 1985; pp143–190.Google Scholar
  16. 16.
    J.P. Bebelman, M.P.J. Evers, B. Zelle, R. Bank, J.C. Pronk, S.G.M. Meuwissen, W.H. Mager, RJ. Planta, A.W. Eriksson, R.R. Frants, Family and population studies on the human pepsinogen A multi gene family, Hum, Genet, 82:142–6(1989).CrossRefGoogle Scholar
  17. 17.
    J. Marsh, M. Ertie, E. Weykes, The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation, Gene 32:481–5(1984).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Sanger, S. Nicklen, A.R. Coulson, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. USA. 74:5463–7(1977).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Defize, R.H. Hunt, Effect of acid and pepsin on pepsinogen synthesis and secretion in chief cell monolayer cultures, Gut 30:774–81(1989).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Defize, F. Arwert, H. Kortbeek, R.R. Frants, S.G.M. Meuwissen, A.W. Eriksson, Pepsinogen synthesis and secretion in monolayer culture of human and rabbit gastric mucosal cells, Virchows Arch. B 49:225–30(1985).PubMedCrossRefGoogle Scholar
  21. 21.
    S.G.M. Meuwissen, H. Mullink, A. Bosma, et al. Immunocytochemical localization of pepsinogen A and C in the human stomach, Progr. Clin. Biol. Res. 173:185–198(1985).Google Scholar
  22. 22.
    P.L. Feigner, T.R. Gadek, M. Holm, et al. Lipofectin: a highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl. Acad. Sci. USA, 84:7413–7(1987).CrossRefGoogle Scholar
  23. 23.
    J. Defize, R.H. Hunt, Control of pepsinogen synthesis and secretion in chief cell monolayers, Dig. Dis. Sci. 33:1588–91(1988).CrossRefGoogle Scholar
  24. 24.
    P.H.S. Meijerink, J.P. Bebelman, G. Pals, F. Arwert, R.J. Planta, A.W. Eriksson, WH. Mager, Analysis of the promoter of a human pepsinogen A gene, Adv. Exp. Med. Biol. 306:87–90(1992).CrossRefGoogle Scholar
  25. 25.
    J. Boyd, A. Bird, DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein Cell-64:1123–34(1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. Pals
    • 1
  • P. H. S. Meijerink
    • 1
  • J. Defize
    • 1
  • J. P. Bebelman
    • 1
  • M. Strunk
    • 1
  • F. Arwert
    • 1
  • A. Timmerman
    • 3
  • W. H. Mager
    • 2
  1. 1.Institute of Human GeneticsVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Biochemistry and Molecular BiologyVrije UniversiteitAmsterdamThe Netherlands
  3. 3.Royal Institute of Public Health and Environmental ProtectionBilthovenThe Netherlands

Personalised recommendations