Cardosin A and B, Aspartic Proteases from the Flowers of Cardoon

  • Carlos Faro
  • Paula Veríssimo
  • Yingzhang Lin
  • Jordan Tang
  • Euclides Pires
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 362)


Plant aspartic proteinases have been detected and purified from several plant monocotyledoneous, dicotyledoneous and gymnosperms. The physiological role of these aspartic proteinases is not as yet well elucidated, although the involvement in the hydrolysis of exogenous and storage proteins have been reported (for review see reference 1)


Aspartic Proteinase Apparent Molecular Mass Milk Clotting Milk Clotting Activity Milk Clotting Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.Kervinen, K.Törmäkangas, P.Runeberg-Roos, K.Guruprasad, T.Blundell and T.H.Teeri. Struture and possible function of aspartic proteinases in barley and other plants. In “Aspartic Proteinases: Structure, Function, Biology, and Biomedical Implications” K.Takahashi ed., p. 241, Plenum Press (1995).Google Scholar
  2. 2.
    C.Faro, J.S.Alface and E.Pires. Purification of a protease from the flowers of Cynara cardunculus L. Cienc. Biol. 12 (suppl 5A): 201 (1987).Google Scholar
  3. 3.
    U.Meimgartner, M.Pietrzak, R.Geertsen, P.Brodelius, A.C.Figueiredo and M.S.Pais. Purification and characterization of milk clotting enzymes from Cynara cardunculus. Phytochemistry 29:1405 (1990).CrossRefGoogle Scholar
  4. 4.
    C.Faro, A.J.Moir and E.Pires. Specificity of a milk clotting enzyme extracted from the thistle Cynara cardunculus L.: action on oxidised insulin and k-casein. Biotech. Lett. 14:841 (1992).CrossRefGoogle Scholar
  5. 5.
    H.B.Droshe and B.Foltmann. Specificity of milk clotting enzymes towards bovine kappa-casein. Biochim. Biophys. Acta 995: 221 (1989).CrossRefGoogle Scholar
  6. 6.
    M.T.Barros, M.G.Carvalho, F.Garcia and E.Pires. Stability performance of the acid Cynara cardunculus L. proteases in biphasic aqueous-organic solvents systems. Biotech.Lett. 14: 179 (1992).CrossRefGoogle Scholar
  7. 7.
    J.Kay and B.Dunn Substrate specificity and inhibitors of aspartic proteinases Scand. J. Clin. Lab. Invest. 52 (Suppl.210): 23 (1992).Google Scholar
  8. 8.
    P.Martin (1984) Hydrolysis of the synthetic chromophoric hexapeptide Leu-Ser-Phe(NO2)-Nle-Ala-Leu-OMe catalyzed by bovine pepsin A. Biochim. Biophys. Acta 791: 28 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    Y.Lin, M.Fuzek, X.Lin, J.Hartsuck, F.Kezdy and J.Tang. pH dependence of kinetic parameters of pepsin, rhizopuspepsin and their active site hydrogen bonds mutants. J.Biol. Chem. 267: 18413 (1992)PubMedGoogle Scholar
  10. 10.
    P.Veríssimo, C.Faro, Y.Lin, J.Tang and E.Pires. Isolation and properties of two cardosins, aspartic proteases from C.cardunculus L. (submitted)Google Scholar
  11. 11.
    P. Sepulveda, J. Marciniszyn, D. Liu and J. Tang. Prymary structure of porcine pepsin. J. Biol. Chem. 250: 5082 (1975).PubMedGoogle Scholar
  12. 12.
    K.Törmäkangas, P.Runeberg-Roos, A.Östman, C.Tilgmann, P.Sarkkinen, J.Kervinen, L.Mikkola and N.Kalkkinen. Aspartic proteinase from barley seeds is related to animal cathepsin D. In “Structure and Function of the Aspartic Proteinases” B. Dunn ed., p.355, Plenum Press, New York (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Carlos Faro
    • 1
  • Paula Veríssimo
    • 1
  • Yingzhang Lin
    • 2
  • Jordan Tang
    • 2
  • Euclides Pires
    • 1
  1. 1.Departamento de BioquímicaUniversidade de CoimbraCoimbraPortugal
  2. 2.Protein Studies ProgramOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations