Identification of Five Molecular forms of Cathepsin D in Bovine Milk

  • Lotte Bach Larsen
  • Torben Ellebæk Petersen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 362)


Bovine milk contains a wide range of enzymes (1), including zymogens for the proteolytic enzymes plasmin and cathepsin D (2,3). Inside the cell procathepsin D is rapidly processed to the mature cathepsin D found in lysosomes (4). Resulting from the limited availability of procathepsin D the activation process leading to cathepsin D has been less clarified than e.g. the activation pathways of pepsinogen.


Affinity Chromatography Molecular Form Bovine Milk Breakthrough Fraction Bovine Spleen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Whitney, Proteins of milk in “Fundamentals of dairy chemistry” p. 81, N. P. Wong (ed.), van Nostrand Reinhold, New York (1988).CrossRefGoogle Scholar
  2. 2.
    W. N. Eigel, C. J. Hofmann, B. A. K. Chibber, J. M. Tomich, T. W. Keenan and E. T. Mertz, Plasmin-mediated proteolysis of casein in bovine milk, Proc. Natl. Acad. Sci. USA 76:2244 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    L. B. Larsen, A. Boisen and T. E. Petersen, Procathepsin D cannot autoactivate to cathepsin D at acid pH, FEBS Lett. 319:54 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    V. Gieselmann, R. Pohlmann, A. Hasilik and K. von Figura, Biosynthesis and transport of cathepsin D in cultured human fibroblasts, J. Cell Biol. 97:1 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    G. E. Conner, Isolation of procathepsin D from mature cathepsin D by pepstatin affinity chromatography, Biochem. J. 263:601 (1989).PubMedGoogle Scholar
  6. 6.
    P. Matsudaira, Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes, J. Biol. Chem. 262:10035 (1987).PubMedGoogle Scholar
  7. 7.
    M. S. Blake, K. H. Johnston, G. J. Russell-Jones and E. C. Gotschlich, A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on western blots, Anal. Biochem. 136:175 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Marciniszyn, J. S. Huang, J. A. Hartsuck and J. Tang, Mechanism of intramolecular activation of pepsinogen, J. Biol. Chem. 251:7095 (1976).PubMedGoogle Scholar
  9. 9.
    M. N. G. James and A. R. Sielecki, Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 Å resolution, Nature 319:33 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Takahashi and J. Tang, Cathepsin D from porcine and bovine spleen in “Meth. enzymol.” 80:565, Colowick and Lorand (eds.), Academic Press, New York (1981).Google Scholar
  11. 11.
    S. Yonezawa, T. Takahashi, X. Wang, R. N. S. Wong, J. A. Hartsuck and J. Tang, Structures at the proteolytic processing region of cathepsin D, J. Biol. Chem. 263:16504 (1988).PubMedGoogle Scholar
  12. 12.
    P. Metcalf and M. Fusek, Two crystal structures for cathepsin D: the lysosomal targeting signal and active site, EMBO J. 12:1293(1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Lotte Bach Larsen
    • 1
  • Torben Ellebæk Petersen
    • 1
  1. 1.Protein Chemistry LaboratoryUniversity of AarhusAarhusDenmark

Personalised recommendations