Skip to main content

Discovery of Inhibitors of Human Renin with High Oral Bioavailability

  • Chapter
Aspartic Proteinases

Abstract

Oral bioavailability has been a formidable barrier to the development of drugs which mimic the structures of biologically active peptides. This report describes the discovery of potent renin inhibitors having high oral bioavailability and good plasma pharmacokinetics. These are substances derived by modification of the P4–P1’ sequence of angiotensinogen, the renin substrate. These results demonstrate a successful peptide mimetic approach to the design of orally bioavailable pharmacologically active agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. H. Rosenberg, K. P. Spina, S. L. Condon, J. Polakowski, Z. Yao, P. Kovar, H. H. Stein, J. Cohen, J. L. Barlow, V. Klinghofer, D. A. Egan, K. A. Tricarico, T. J. Perun, W. R. Baker, and H. D. Kleinert, Studies directed toward the design of orally active renin inhibitors. 2. Development of the efficacious, bioavailable renin inhibitor (2S)-2–benzyl-3–[[(l-methylpiperazin-4–yl)sulfonyl]-proprionyl]-3–thiazol-4–yl-L-alanine amide of (2S,3R,4S)-2–amino-1–cyclohexyl-3,4–dihydroxy-6–methylheptane (A-72,517), J. Med. Chem. 36: 460–467 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. T. Ogihara, J. Higaki, M. Nagano, K. Higashimori, K. Masuo, and H. Mikami, A novel human renin inhibitor with a clinically applicable bioavailability, FK906, Hypertension 20:S423 (1992).

    Google Scholar 

  3. H. Umezawa, T. Aoyagi, H. Morishima, M. Matsuzaki, M. Hamada, and T. Takeuchi, Pepstatin, a new pepsin inhibitor produced by actinomycetes, J. Antibiot. 23:259 (1970).

    Article  PubMed  CAS  Google Scholar 

  4. D. H. Rich and E. T. O. Sun, Mechanism of the inhibition of pepsin by pepstatin, Biochem. Pharmacol. 29:2205–2212 (1980), and references therein.

    Article  PubMed  Google Scholar 

  5. T. Aoyagi, H. Morishima, R. Nishizawa, S. Kunimoto, T. Takeuchi, H. Umezawa, and K. Ikezawa, Biological activity of pepstatins, pepstatone A and partial peptides on pepsin, cathepsin D, and renin, J. Antibiot. 25: 689–694 (1972).

    Article  PubMed  CAS  Google Scholar 

  6. D. A. Tewksbury, R. A. Dart, and J. Travis, The amino terminal amino acid sequence of human angiotensinogen, Biochem. Biophys Res. Commun., 99: 1311–1315 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. M. N. G. James, A. Sielecki, F. Salituro, D. H. Rich, and T. Hofmann, Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin, Proc. Natl. Acad. Sci. USA 79:6137–6141 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. Nomenclature: J. Schechter and A. Berger, On the size of the active site in proteases. I. Papain, Biochem. Biophys. Res. Commun. 27: 157–162 (1967).

    Article  Google Scholar 

  9. J. Boger, L. S. Payne, D. S. Perlow, N. S. Lohr, M. Poe, E. H. Blaine, E. H. Ulm, T. W. Schorn, B. I. LaMont, T-Y. Lin, M. Kawai, D. H. Rich, and D. F. Veber, Renin Inhibitors. Synthesis of subnanomolar, competitive, transition-state analogue inhibitors containing a novel analogue of statine, J. Med. Chem. 28: 1779–1790 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. M. Szelke, B. Leckie, A. Hallett, D. M. Jones, J. Sueiras, B. Atrash, and A. F. Lever, Potent new inhibitors of human renin, Nature 299:555–557 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. J. Boger, N. S. Lohr, E. H. Ulm, M. Poe, E. H. Blaine, G. M. Fanelli, T-Y. Lin, L. S. Payne, T. W. Schorn, B. I. LaMont, T. C. Vassil, I. I. Stabilito, D. F. Veber, D. H. Rich, and A. S. Boparai, Novel renin inhibitors containing the amino acid statine, Nature 303: 81–84 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. E. Klauschenz, M. Bienert, H. Egler, U. Pleiss, H. Niedrich, and K. Nikolics, Tritium labelling of gonadotropin releasing hormone in its proline and histidine residues, Peptides 2:445–452 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. J. Boger, C. D. Bennett, L. S. Payne, E. H. Ulm, E. H. Blaine, C. F. Homnick, T. W. Schorn, B. I. Lamont and D. F. Veber, Design of proteolytically-stable, peptidal renin inhibitors and determination of their fate in vivo, Regul. Pept. S4: 8–13 (1985).

    Article  Google Scholar 

  14. M. Szelke, D. M. Jones, B. Atrash, A. Hallett, and B. Leckie, Novel transition-state analogue inhibitors of renin, Peptides: Structure and Function. Proceedings of the 8th American Peptide Symposium; V. J. Hruby and D. H. Rich, Eds., Pierce Chemical Co.: Rockford, IL, 579–582 (1983).

    Google Scholar 

  15. A. H. Fray, R. L. Kaye, and E. F. Kleinman, A short, stereoselective synthesis of the lactone precursor to 2R,4S,5S hydroxyethylene dipeptide isosteres, J. Org. Chem. 51:4828–4833 (1986).

    Article  CAS  Google Scholar 

  16. E. F. Kleinman, A. H. Fray, W. F. Holt, M. A. R. Kiron, W. R. Murphy, I. M. Purcell, and R. L. Rosati, CP-71,362, an unusually potent inhibitor of rat and dog renin, Bioorg. Med. Chem. Lett., 4, 589 (1994).

    Article  CAS  Google Scholar 

  17. Other hydroxyethylene inhibitors of this class are reported: P. Buhlmayer, A. Caselli, W. Fuhrer, R. Goschke, V. Rasetti, H. Rueger, J. L. Stanton, L. Criscione, and J. M. Wood, Synthesis and biological activity of some transition-state inhibitors of human renin, J. Med. Chem. 31:1839–1846 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. D. H. Rich, M. S. Bernatowicz, and P. G. Schmidt, Direct 13C NMR evidence for a tetrahedral intermediate in the binding of a pepstatin analogue to porcine pepsin, J. Am. Chem. Soc. 104:3535–3536 (1982).

    Article  CAS  Google Scholar 

  19. T. Kokubu, K. Hiwada, Y. Sato, T. Iwata, Y. Imamura, R. Matsueda, Y. Yabe, H. Kogen, M. Yamazaki, Y. Iijima, and Y. Baba, Highly potent and specific inhibitors of human renin, Biochem. Biophys. Res. Commun. 118:929–933 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. M. Miyazaki, N. Toda, Y. Etoh, T. Kubota, and K. Iizuka, Newly synthesized, potent human renin inhibitor, Presented at the 59th General Meeting of the Japanese Pharmacological Society, April 1–4, 1986, Niigata, Japan, Jpn. J. Pharmacol. 40S: 70p (1986).

    Google Scholar 

  21. R. Guegan, J. Diaz, C. Cazaubon, M. Beaumont, C. Carlet, J. Clement, H. Demarne, M. Mellet, J-P. Richaud, D. Segondy, M. Vedel, J-P. Gagnol, R. Roncucci, B. Castro, P. Corvol, G. Evin, and B. P. Roques, Pepstatin analogues as novel renin inhibitors, J. Med. Chem. 29:1152–1159 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. T. L. Blundell, personal communication.

    Google Scholar 

  23. W. R. Murphy, R. T. Wester, R. L. Rosati, D. J. Hoover, I. M. Purcell, J. T. MacAndrew, T. M. Schelhorn, D. E. Wilder, A. H. Smith, and W. F. Holt, Hemodynamic effects of the renin inhibitor CP-80,794 in several species, Amino Acids: Chemistry, Biology, and Medicine, Lubek, G.; Rosenthal, G.A., eds., ESCOM, pp. 676–688 (1990).

    Google Scholar 

  24. K. Iizuka, T. Kamijo, T. Kubota, K. Akahane, H. Umeyama, and Y Kiso, New human renin inhibitors containing an unnatural amino acid, norstatine, J. Med. Chem. 31:701 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. Dosed as a solution in 0.1 M sodium dodecyl sulfate (SDS) 20 mg/kg p.o., effect lasting >5h (maximum drop 25 mm Hg), Solubility of 23 in 0.1M SDS at 27 °C, 8.7 mg/mL, in pH 6.5 isotonic buffer at 37 °C, 0.02 mg/mL.

    Google Scholar 

  26. For example, see H. D. Kleinert, J. R. Luly, B. A. Bopp, K. M. Verburg, P. A Hoyos, M. D. Karol, J. J. Plattner, R. R. Luther, H. H. Stein, Profile of the renin inhibitor, enalkiren, Cardiovascular Drug Rev. 8: 203–219 (1990)

    Article  CAS  Google Scholar 

  27. B.L. Sibanda, T. Blundell, P. M. Hobart, M. Fogilano, J. S. Bindra, B. W. Dominy, and J. M. Chirgwin, Computer graphics modelling of human renin: specificity, catalytic activity, and intron-exon junctions, FEBS Lett. 174:102–110 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. R. Bott, E. Subramanian, and D. R. Davies, Three-dimensional structure of the complex of the rhizopus chinensis carboxyl protease and pepstatin at 2.5 resolution, Biochemistry 21:6956–6962 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. L. Pearl and T. L. Blundell, The active site of aspartic proteinases, FEBS Lett. 174: 96–101 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. B. Veerapandian, J. B. Cooper, A. Sali, T. L. Blundell, B. W. Dominy, R. L. Rosati, D. B. Damon, Hoover, D.J., Direct Observation by X-ray Analysis of the Tetrahedral’Intermediate’ of Aspartic Proteinases, Protein Science 1, 322–328 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. V. Dhanaraj, C. DeAlwis, C. Frazao, M. Badasso, B. L. Sibanda, I. J. Tickle, J. B. Cooper, H. P. C. Driessen, M. Newman, C. Aguilar, S. P. Wood, T. L. Blundell, P. M. Hobart, K. F. Geoghegan, M. J. Ammirati, D. E. Danley, B. A. O’Connor, and D. J. Hoover, X-ray analyses of peptide-inhibitor complexes define the structural basis of specificity for human and mouse renins, Nature 357: 466–472 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. Complete details of the synthesis and evaluation of compounds in this series will be submitted for publication elsewhere.

    Google Scholar 

  33. Other aminopiperidine renin inhibitors are independently reported. See: P. Raddatz, A. Jonczyk, K-O. Minck, C. J. Schmitges, and J. Sombroek, Substrate analogue renin inhibitors containing replacements of histidine in P2 or isosteres of the amide bond between P3 and P2 sites, J. Med. Chem. 34:3267–3280 (1991), and reference 34.

    Article  PubMed  Google Scholar 

  34. P. Raddatz, A. Jonczyk, K-O. Minck, F. Rippmann, C. Schittenhelm, and C. J. Schmitges, Renin inhibitors containing new P1-P1’ dipeptide mimetics with heterocycles in P1’, J. Med. Chem. 35:3525–3536 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. J. J. Plattner, P. A. Marcotte, Hollis D. Kleinert, H. H. Stein, J. Greer, G. Bolis, A. K. L. Fung, B. A. Bopp, J. R. Luly, H. L. Sham, D. J. Kempf, S. H. Rosenberg, J. F. Dellaria, B. De, I. Merits, and T. J. Perun, Renin inhibitors. Dipeptide analogs of angiotensinogen utilizing a structurally modified phenylalanine residue to impart proteolytic stability, J. Med. Chem. 31: 2277–2288 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoover, D.J. et al. (1995). Discovery of Inhibitors of Human Renin with High Oral Bioavailability. In: Takahashi, K. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 362. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1871-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1871-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5761-2

  • Online ISBN: 978-1-4615-1871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics