Skip to main content

Curie Point Pyrolysis Mass Spectrometry and Its Application to Bacterial Systematics

  • Chapter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 75))

Abstract

The need to classify, identify and type microorganisms is an ever present theme in microbiology, notably in clinical and industrial microbiology. Here, identification is critical for distinguishing between potential pathogens or spoilage organisms, and commensals or contaminants of no significance. Similarly, the choice of microorganisms for industrial screening programmes, especially those with a low throughput, is primarily a problem of distinguishing between known organisms and recognising new ones. Further, effective typing procedures are essential in epidemiological tracing and in eliminating sources of microbial contamination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriaans, B. and Shah, H. (1988) Fusobacterium ulcerans sp. nov. from tropical ulcers. Int. J. Syst. Bacteriol. 38, 447–448.

    Article  Google Scholar 

  • Anker, L.S. and Jurs, P.C. (1992) Prediction of carbon-13 nuclear magnetic resonance chemical shifts by artificial neural networks. Anal. Chem. 62, 1157–1164.

    Article  Google Scholar 

  • Aries, R.E., Gutteridge, G.S. and Ottley, T.W. (1986) Evaluation of a low cost, automated pyrolysis mass spectrometry. J. Anal. Appl. Pyrol. 9, 81–98.

    Article  CAS  Google Scholar 

  • Arrigo, P., Giuliano, F.,Scalia, F., Rapallo, A. and Damiani, G. (1991) Identification of a new motif on nucleic acid sequence data using Kohonen’s self-organizing map. Comp. Appl. Biol. Sci. 7, 353–357

    CAS  Google Scholar 

  • Atalan, E. (1993) Selective Isolation, Characterisation and Identification of Some Streptomyces Species. Ph. D. Thesis, University of Newcastle upon Tyne.

    Google Scholar 

  • Balfoort, H.W., Snoek, J., Smits, J.R.M., Breedveld, L.W., Hofstraat, J.W. and Ringelberg, J. (1992) Automatic identification of algae: Neural network analysis of flow cytometric data. J. Plank. Res. 14, 575–589.

    Article  Google Scholar 

  • Blum, A. (1992) Neural Networks in C++. John Wiley and Sons, New York.

    Google Scholar 

  • Boddy, L. and Morris, C.W. (1993) Neural network analysis of flow cytometry data, in “Flow Cytometry in Microbiology” (Lloyd, D., ed.), pp. 159–169. Springer-Verlag, London.

    Google Scholar 

  • Cartmill, T,D.I., Orr, K., Freeman, R. and Sisson, P.R. (1992) Nosocomial infection with Clostridium difficile investigated by pyrolysis mass spectrometry. J. Med. Microbiol 37, 352–356.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J., Atalan, E., Ward, A.C. and Goodfellow, M. (1993a) Artificial neural network analysis of pyrolysis mass spectrometric data in the identification of Streptomyces strains. FEMS Microbiol. Lett. 107, 321– 326.

    Article  PubMed  CAS  Google Scholar 

  • Chun., J., Atalan, E., Kim, S-B., Kim, H-J., Hamid, M.E., Trujillo, M.E., Magee, J.G., Manfio, G.P., Ward, A.C. and Goodfellow, M. (1993b) Rapid identification of streptomycetes by artificial neural network analysis of pyrolysis mass spectra. FEMS Microbiol. Lett. 114, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Cleratì, Y.,Thibault, J., Cheruy, A. and Corneu, G. (1991) Comparison of prediction performances between models obtained by the group method of data handling and neural networks for the alcoholic fermentation rate in enology. J. Ferment. Biotech. 71, 356–362.

    Google Scholar 

  • Colloch, N., Etchebest, C., Thoreau, E., Henrissat, B. and Mornon, J.P. (1993) Comparison of 3 algorithms for the assignment of secondary structure in proteins -the advantages of a consensus assignment. Protein Eng. 6, 377–382.

    Article  CAS  Google Scholar 

  • Demeler, B. and Zhou, G. (1991) Neural network optimization for E. coli promoter prediction. Nucleic Acids Res. 19, 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  • Donnison, A.M., Gutteridge, C.S., Norris, JR., Morgan, H.W. and Daniel, R. (1986) A preliminary grouping of New Zealand Thermus strains by pyrolysis mass spectrometry. J. Anal. Appl. Pyrol. 9, 281– 285.

    Article  Google Scholar 

  • Duerden, B.I., Eley, A., Goodwin, L., Magee, J.T., Hindmarch, J.M. and Bennett, K.W. (1989) A comparison of Bacteroides ureolyticus isolates from different clinical sources. J. Med. Microbiol. 29, 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Fessenden, R.J. and Gyorgyi, L. (1991) Identifying functional groups in IR spectra using an artificial neural network. J. Chem. Soc. Perkin Trans. 2, 1755–1762.

    Google Scholar 

  • Freeman, J.A. and Skapura, D.M. (1991) Neural Networks: Algorithms, Applications, and Programming Techniques. Addison-Wesley Publishing Company, Reading, MA.

    Google Scholar 

  • Freeman, R., Goodfellow, M., Gould, F.K., Hudson, S.J. and Lightfoot, N.F. (1990) Pyrolysis mass spectrometry for the rapid epidemiological typing of clinically significant bacterial pathogens. J. Med. Microbiol. 32, 283486.

    Article  Google Scholar 

  • Freeman, R., Sisson, P.R., Lightfoot, N.F. and McLauchlin, J. (1991a) Analysis of epidemic and sporadic strains of Listeria monocytogenes by pyrolysis mass spectrometry. Lett. Appl. Microbiol. 12, 133–136.

    Article  CAS  Google Scholar 

  • Freeman, R., Gould, F.K., Sisson, PR. and Lightfoot, N.F. (1991b) Strain differentiation of capsule type 23 penicillin-resistant Streptococcus pneumoniae from nosocomial infections by pyrolysis mass spectrometry. Lett. Appl. Microbiol. 13, 28–31.

    Article  Google Scholar 

  • Freeman, R., Goodacre, R., Sisson, P.R., Magee, J.G., Ward, A.C. and Lightfoot, N.F. (1994a) Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra. J. Med. Microbiol. (in press).

    Google Scholar 

  • Freeman, R., Law, D., Sisson, P.R., Ward, A.C. and Lightfoot, N.F. (1994b) Rapid detection of vero cytotoxin production in Eschehchia coli by artificial neural network analysis of pyrolysis mass spectra. J. Med. Microbiol. (in press).

    Google Scholar 

  • Goodacre, R. and Berkeley, R.C.W. (1990) Detection of small genotypic changes in Escherichia coli by pyrolysis mass spectrometry. FEMS Microbiol. Lett. 71, 133–138.

    Article  CAS  Google Scholar 

  • Goodacre, R. and D.B. Kell (1993) Rapid and quantitative analysis of bioprocesses using pyrolysis mass spectrometry and neural networks: application to indole production. Anal. Chim. Acta 279, 17–26.

    Article  CAS  Google Scholar 

  • Goodacre, R., Hartmann, A., Beringer, J.E. and Berkeley, R.C.W. (1991) The use of pyrolysis mass spectrometry in the characterization of Rhizobium meliloti. Lett. Appl. Microbiol. 13, 157–160.

    Article  Google Scholar 

  • Goodacre, R., Kell, D.B. and Bianchi, G. (1992) Neural networks and olive oil. Nature 359, 594.

    Article  Google Scholar 

  • Goodacre, R., Kell, D.B. and Bianchi, G. (1993a) Rapid assessment of virgin olive oils and other seed oils using pyrolysis mass spectrometry and artificial neural networks. J. Sci. Food Agric. 63, 297–307.

    Article  CAS  Google Scholar 

  • Goodacre, R., Edmonds, A.N. and Kell, D.B. (1993b) Quantitative analysis of the pyrolysis-mass spectra of complex mixtures using artificial neural networks: application to amino acids in glycogen. J. Anal. Appl. Pyrol. 26, 93–114.

    Article  CAS  Google Scholar 

  • Goodacre, R., Neal, M.J., Kell, D.B., Greenham, L.W., Noble, W.C. and Harvey, R.G. (1994) Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs. J. Appl. Bacteriol. 76, 124–134.

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow, M. and O’Donnell, A.G (1989) Search and discovery of industrially significant actinomycetes, in “Microbial Products: New Approaches” (Baumberg, S., Hunter, I.S. and Rhodes, P.M., eds.), pp. 343–383, Cambridge University Press, Cambridge.

    Google Scholar 

  • Gould, F.K., Freeman, R., Sisson, P.R., Cookson, B.D. and Lightfoot, N.F. (1991) Inter-strain comparison by pyrolysis mass spectrometry in the investigation of Staphylococcus aureus nosocomial infection. J. Hosp. Infect. 19,41–48.

    Article  PubMed  CAS  Google Scholar 

  • Gower, J.C. (1971) A general coefficient of similarity and some of its properties. Biometrics 27, 857–874.

    Article  Google Scholar 

  • Gutteridge, C.S. (1987) Characterization of microorganisms by pyrolysis mass spectrometry. Meth. Microbiol. 19, 227–272.

    Article  CAS  Google Scholar 

  • Gutteridge, C.S. and Norris, J.R. (1979) The application of pyrolysis techniques to the identification of microorganisms. J. Appl. Bacteriol. 47, 5–43.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, C.S., Vallis, L. and MacFie, H.J.H. (1985) Numerical methods in the classification of micro-organisms by pyrolysis mass spectrometry, in “Computer-Assisted Bacterial Systematics” (Goodfellow, M., Jones, D. and Priest, FG., eds), pp. 369–401. Academic Press, London.

    Google Scholar 

  • Hertz, J., Krogh, A. and Palmer, R.G. (1991) Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Hindmarch, J.M., Magee, J.T., Hadfield, M.A. and Duerden, B.I. (1990) A pyrolysis-mass spectrometry study of Corynebacterium spp.. J. Med. Microbiol. 31, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Irwin, W.J. (1982) Analytical Pyrolysis: A Comprehensive Guide. Marcel Dekker, New York.

    Google Scholar 

  • Kay, H.E., Coutinho, H.L.C., Fattori, M., Manfio, G.P., Goodacre, R., Nuti, M.P., Basaglia, M. and Beringer, J.E. (1994) The identification of Bradyrhizobium japonicum strains isolated from Italian soils. Microbiology (in press).

    Google Scholar 

  • Kennedy, M.J. and Thakur, M.S. (1993) The use of neural networks to aid in microorganism identification: A case study of Haemophilus species identification. Antonie van Leeuwenhoek 63, 35–38.

    Article  PubMed  CAS  Google Scholar 

  • Kjaer, M. and Poulsen, F.M. (1991) Identification of 2D H-1-NMR antiphase cross peaks using a neural network. J. Magn. Reson. 94, 659–663.

    CAS  Google Scholar 

  • Kohonen, T. (1989) Self-Organization and Associative Memory. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Low, J.C., Chalmers, R.M., Donachie, W., Freeman, R., McLauchlin, J. and Sisson, P.R. (1992) Pyrolysis mass spectrometry of Listen a monocytogenes isolates from sheep. Res. Vet. Sci. 53, 64–67.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J.T. (1993) Whole-organism fingerprinting, in “Handbook of New Bacterial Systematics” (Goodfellow, M. and O’Donnell, A.G., eds), pp. 383–427. Academic Press, London.

    Google Scholar 

  • Magee, J.T. (1994) Analytical fingerprinting methods, in “Chemical Methods in Prokaryotic Systematics” (Goodfellow, M. and O’Donnell, A.G., eds), pp. 523–553. John Wiley and Sons Ltd., Chichester.

    Google Scholar 

  • Magee, J.T., Hindmarch, J.M., Bennett, K.W., Duerden, B.I. and Aries, R.E. (1989a) A pyrolysis mass spectrometry study of fusobacteria. J. Med. Microbiol. 28, 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J.T., Hindmarch, J.M., Burnett, I.A. and Pease, A. (1989b) Epidemiological typing of Streptococcus pyogenesby pyrolysis mass spectrometry. J. Med. Microbiol. 30, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J.T., Hindmarch, J.M. and Nicol, CD. (1991) Typing of Staphylococcus pyogenes by pyrolysis mass spectrometry. J. Med. Microbiol. 35, 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Mathers, K., Freeman, R., Sisson, P.R. and Lightfoot, N.F. (1994) Differentiation between bacterial species and sub-species by pyrolysis mass spectrometry of extracted DNA. Zbl. Bakt. (in press).

    Google Scholar 

  • Meuzelaar, H.L.C and Kistemaker, P.G. (1973) A technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry. Anal. Chem. 45, 587–590.

    Article  PubMed  CAS  Google Scholar 

  • Meuzelaar, H.L.C., Haverkamp, J. and Hileman, F.D. (1982) Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials. Compendium and Atlas. Elsevier, Amsterdam.

    Google Scholar 

  • Meyer, B.T., Hansen, T., Nute, D., Albersheim, P., Darvill, A., York, W. and Sellers, J. (1991) Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks. Science 251, 542–544.

    Article  PubMed  CAS  Google Scholar 

  • Millership, S. (1993) Use of a neural network for analysis of bacterial whole cell protein fingerprints. Binary 5, 126–131.

    Google Scholar 

  • Morris, C.W. and Boddy, L. (1993) Some neural network packages: A comparative review. Binary 5, 7–9.

    Google Scholar 

  • Morris, C.W., Boddy, L. and Allman, R. (1992) Identification of basidiomycete spores by neural network analysis of flow cytometry data. Mycol. Res. 96, 697–701.

    Article  Google Scholar 

  • Munk, M.E., Madison, M.S. and Robb, E.W. (1991) Neural network models for infrared spectrum interpretation. Mikrochim. Acta (Wien) 2, 505–514.

    Article  CAS  Google Scholar 

  • Neider, J.C. (1979) Genstat Reference Manual. Scientific and Social Service Program Library, University of Edinburgh.

    Google Scholar 

  • Okami, Y. and Hotta, K. (1988) Search and discovery of new antibiotics, in “Actinomycetes in Biotechnology” (Goodfellow, M., Williams, S.T. and Mordarski, M., eds.), pp. 33–67. Academic Press, London.

    Chapter  Google Scholar 

  • Orr, K., Gould, F.K., Sisson, P.R., Lightfoot, N.F., Freeman, R. and Burdess, D. (1991) Rapid interstrain comparison by pyrolysis mass spectrometry in nosocomial infection with Xanthomonas maltophilia. J. Hosp. Infect. 17, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Ottley, T.W. and Maddock, J. (1986) The use of pyrolysis mass spectrometry. Lab. Proc., October, 53–55.

    Google Scholar 

  • Qian, N. and Sejnowski, T.S. (1988) Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865–884.

    Article  PubMed  CAS  Google Scholar 

  • Rataj, T. and J. Schindler (1991) Identification of bacteria by a multilayer neural network. Binary 3, 159– 164.

    Google Scholar 

  • Robb, E.W. and Munk, M.E. (1990) A neural network approach to infrared spectrum interpretation. Mikrochim. Acta 1, 131–155.

    Article  CAS  Google Scholar 

  • Rumelhart, D.E., McClelland, J.L and the PDP Research Group (1986) Parallel Distributed Processing. MIT Press, Cambridge.

    Google Scholar 

  • Saddler, G.S., Falconer, C. and Sanglier, J.J. (1989) Preliminary experiments for the selection and identification of actinomycetes by pyrolysis mass spectrometry. Actinomycetologia 2, S3–S4.

    Google Scholar 

  • Sanglier, J-J., Whitehead, D., Saddler, G.S., Ferguson, E.V. and Goodfellow, M. (1992) Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115, 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Schleifer, K.H., Ludwig, W. and Amann, R. (1993) Nucleic acid probes, in “Handbook of New Bacterial Systematics” (Goodfellow, M. and O’Donnell, A.G., eds.), pp. 463–524. Academic Press, London.

    Google Scholar 

  • Schulze, H.G, Blades, M.W., Bree, A.V., Gorzalka, B.B., Greek, L.S.and Turner, R.F.B. (1994) Characteristics of backpropagation neural networks employed in the identification of neurotransmitter Raman spectra. Appl. Spectr. 48, 50–57.

    Article  CAS  Google Scholar 

  • Sellers, J., York, W., Albersheim, P., Darvill, A. and Meyer, B. (1990) Identification of the mass spectra of partially methylated alditol acetates by artificial neural networks. Carbohydr. Res. 207, c1–c5.

    Article  CAS  Google Scholar 

  • Shute, L.A., Berkeley, R.C.W., Norris, J.R. and Gutteridge, C.S. (1985) Pyrolysis mass spectrometry in bacterial systematics, in “Chemical Methods in Bacterial Systematics” (Goodfellow, M. and Minnikin, D.E., eds.), pp. 95–114. Academic Press, London.

    Google Scholar 

  • Simpson, P.K. (1990) Artificial Neural Systems. Pergamon Press, Oxford.

    Google Scholar 

  • Sisson, P.R., Freeman, R., Magee, J.G. and Lightfoot, N.F. (1991a) Differentiation between mycobacteria of the Mycobacterium tuberculosis complex by pyrolysis mass spectrometry. Tubercle 72, 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Sisson, P.R., Freeman, R., Lightfoot, N.F. and Richardson, I.R. (1991b) Incrimination of an environmental source of a case of Legionnaires’ disease by pyrolysis mass spectrometry. Epidermiol. Infect. 107, 127– 132.

    Article  CAS  Google Scholar 

  • Sisson, P.R., Freeman, R., Gould, F.K. and Lightfoot, N.F. (1991c) Strain differentiation of nosocomial isolates of Pseudomonas aeruginosa by pyrolysis mass spectrometry. J. Hosp. Infect. 19, 137–140.

    Article  PubMed  CAS  Google Scholar 

  • Sisson, P.R., Lightfoot, N.F. and Freeman, R. (1992a) Pyrolysis mass spectrometry of micro-organisms. PHLS Microbiology Digest 9, 65–68.

    Google Scholar 

  • Sisson, P.R., Freeman, R., Magee, J.G. and Lightfoot, N.F. (1992b) Rapid differentiation of Mycobacterium xenopi from mycobacteria of the Mycobacterium avium-intracellulare complex by pyrolysis mass spectrometry. J. Clin. Pathol. 45, 355–357.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E.E. and Stormo, G.D. (1993) Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. Nucleic Acids Res. 21, 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Goodfellow, M. and O’Donnell, A.G. (1993) Cell envelopes and classification, in “Handbook of New Bacterial Systematics” (Goodfellow, M. and O’Donnell, A.G., eds.), pp. 195–250. Academic Press, London.

    Google Scholar 

  • Tanabe, K., Tamura, T. and Uesaka, H. (1992) Neural network system for the identification of infrared spectra. Appl. Spectr. 46, 807–810.

    Article  CAS  Google Scholar 

  • Vickers, J.C., Williams, ST. and Ross, G.W. (1984) A taxonomic approach to selective isolation of streptomycetes from soil, in “Biological, Biochemical and Biomedical Aspects of Actinomycetes” (Ortiz-Ortiz, L., Bojalil, L.F. and Yakoleff, V., eds.), pp. 553–561. Academic Press, Orlando.

    Google Scholar 

  • Vieth, M. and A. Kolinski (1991) Prediction of protein secondary structure by an enhanced neural network. ActaBiochim. Polon. 38:335–351.

    CAS  Google Scholar 

  • Weigel, U.M. and Herges, R. (1992) Automatic interpretation of infrared spectra -recognition of aromatic substitution patterns using neural networks. J. Chem. Inform. Comp. Sci. 32, 723–731.

    Article  CAS  Google Scholar 

  • White, H. (1990) Connectional nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks 3, 535–549.

    Article  Google Scholar 

  • Willis, M.J., Di Massimo, C, Montague, G.A., Tham, M.T. and Morris, A.J. (1991) Artificial neural networks in process engineering. IEE Proc.-D 138, 256–266.

    Google Scholar 

  • Windig, W., Kistemaker, P.G., Haverkamp, J. and Meuzelaar, H.L.C. (1979) The effects of sample preparation, pyrolysis and pyrolysate transfer conditions on pyrolysis mass spectra. J. Anal. Appl. Pyrol. 1, 39–52.

    Article  CAS  Google Scholar 

  • Winstanley, T.G., Magee, J.T., Limb, D.I., Hindmarch, J.M., Spencer, R.C., Whiley, R.A., Beighton, D. and Hardie, J.M. (1992) A numerical taxonomic study of the ’Streptococcus milleri’ group based upon conventional phenotypic tests and pyrolysis mass spectrometry. J. Med. Microbiol. 36, 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Wold, S. and Söderström, M.J. (1977) SIMCA: A method for analysing chemical data in terms of similarity and analogy, in “Chemometrics: Theory and Application” (Kowalski, B., ed.), Series no. 52, pp. 243– 282. ACS Symposium Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Zurada, J.M. (1992) Introduction to Artificial Neural Systems. West Publishing Company, St. Paul.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodfellow, M., Chun, J., Atalan, E., Sanglier, JJ. (1994). Curie Point Pyrolysis Mass Spectrometry and Its Application to Bacterial Systematics. In: Priest, F.G., Ramos-Cormenzana, A., Tindall, B.J. (eds) Bacterial Diversity and Systematics. Federation of European Microbiological Societies Symposium Series, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1869-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1869-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5760-5

  • Online ISBN: 978-1-4615-1869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics