Skip to main content

The Biotechnological Importance of Molecular Biodiversity Studies for Metal Bioleaching

  • Chapter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 75))

Abstract

Bioleaching involves the solubilization of metals from solid minerals by the direct and/or indirect metabolic activity of mixed microbial populations. Commercial-scale operations have been used extensively for the recovery of copper and uranium from lowgrade ores, with an estimated 10% of the worlds copper currently being produced using dump or heap bioleach systems (Herbert, 1992). Over the past decade, the biological pretreatment of certain gold-bearing ore concentrates prior to cyanidation has also been dopted as an economically and environmentally superior option to roasting or pressure oxidation techniques (van Aswegen, 1993). Common to all of these commercial operations is the use of undefined microbial populations, usually enriched from natural acidic sites associated with the ore-body of interest. To our knowledge, there have been no reports of defined or introduced consortia being used successfully in commercial-scale bioleach operations. This is not surprising considering the incomplete understanding of sulfide biohydrometallurgy and bioleach ecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • van Aswegan, P.C. (1993) Bio-oxidation of refactory gold ores: the GENMIN experience. Proceedings of Biomine ’93, Australian Mineral Foundation, Adelaide, Australia (in press).

    Google Scholar 

  • Balashova, V.V., I.Ya. Vedenina, G.E. Markosyan, and G.A. Zavarzin (1974) The auxotrophic growth ofLeptospirillum ferrooxidans Microbiology 43, 491–494.

    Google Scholar 

  • Beaucage, S.L. and M.H. Caruthers (1981) Deoxynucleoside phosporamidites: a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahed. Lett. 22, 1859–1862.

    Article  CAS  Google Scholar 

  • Brierley, C.L. (1978) Bacterial leaching. CRC Crit. Rev. Microbiol. 6, 207–262.

    Article  PubMed  CAS  Google Scholar 

  • Britschgi, T.B., and S.J.Giovannoni (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57, 1707–1713.

    PubMed  CAS  Google Scholar 

  • Brosius, J., J.J. Palmer, J.P. Kennedy, and H.F. Noller (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene fromEscherichia coli Proc. Natl. Acad. Sci. USA 75, 4801–4805.

    Article  PubMed  CAS  Google Scholar 

  • Bull, A.T., M. Goodfellow, and J.H. Slater (1992) Biodiversity as a source of innovation in biotechnology. Ann. Rev. Microbiol. 46, 219–252.

    Article  CAS  Google Scholar 

  • Colmer, A.R. and ME. Hinkle (1947) The role of microorganisms in acid mine drainage: a preliminary report. Science 106, 253–256.

    Article  PubMed  CAS  Google Scholar 

  • De Soete, G. (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48,621–626.

    Article  Google Scholar 

  • Dorsch, M and E. Stackebrandt (1992) Some modifications in the procedure of direct sequencing of PCR amplified 16S rDNA. J. Microbiol. Meth. 16, 271–279.

    Article  Google Scholar 

  • Drobner, E., H. Huber, R. Rachel, and K.O. Stetter (1992)Thiobacillus plumbophilus sp. nov., a novel galena and hydrogen oxidizer. Arch. Microbiol. 157, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Fox , E.F., J.D. Wisotzkey, and P. Jurtshuk (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42, 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni, S.J., T.B. Britschgi, C.L. Moyer, and K.G. Field (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345, 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Goebel, B.M., and Stackebrandt, E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. (in press)

    Google Scholar 

  • Gormely, L.S., D.W. Duncan, R.M.R. Branion, and K.L. Pinder (1975) Continuous culture ofThiobacillus ferrooxidans on a zinc sulfide concentrate. Biotechnol. Bioeng. 17, 31–49.

    Article  CAS  Google Scholar 

  • Harrison, A.P. (1978) Microbial succession and mineral leaching in an artificial coal spoil, Appl. Environ. Microbiol. 36, 861–869.

    PubMed  CAS  Google Scholar 

  • Harrison, A.P. (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Ann. Rev. Microbiol. 38, 265–292.

    Article  CAS  Google Scholar 

  • Harrison, A.P. and P.R. Norris (1985)Leptospirillum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol. Lett. 30, 99–102.

    Article  CAS  Google Scholar 

  • Harrison, A.P. (1986) Characterisation ofThiobacillus ferrooxidans and other iron-oxidizing bacteria, with emphasis on nucleic acid analysis. Biotechnol. Appl. Biochem. 8, 249–257

    CAS  Google Scholar 

  • Helle, U and U. Onken (1988) Continuous micobial leaching of a pyritic concentrate byLeptospirillum-ìikc bacteria . Appl. Microbiol. Biotechnol. 28, 553–558.

    Article  CAS  Google Scholar 

  • Herbert, R.A. (1992) A prospective on the biotechnological potential of extremophiles. TIBTECH 10, 395– 402.

    Article  CAS  Google Scholar 

  • Huber, H. and K.O. Stetter (1989)Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch. Microbiol. 151, 479–485.

    Article  CAS  Google Scholar 

  • Huber, H. and K.O. Stetter (1990)Thiobacillus cuprinus sp. nov., a novel facultative organotrophic metal-mobilizing bacterium. Appl. Environ. Microbiol.56315–322

    PubMed  CAS  Google Scholar 

  • Hutchins, S.R., M.S. Davidson, J.A. Brierley, and C.L. Brierley (1986) Microorganisms in reclaimation of metals. Ann. Rev. Microbiol. 40, 311–336.

    Article  CAS  Google Scholar 

  • Jukes, T.H. and C.R. Cantor (1969) Evolution of protein molecules, in “Mammalian Protein Metabolism” (Munro, N.H., Ed.), pp.21–132. Academic Press, New York.

    Google Scholar 

  • Kane, M.D., Poulsen, L.K., and D.A. Stahl (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol. 59, 682–686.

    PubMed  CAS  Google Scholar 

  • Kovalenko, E.V. and P.T. Malakhova (1990) Microbial succession in compensated sulfide ores. Microbiology 59, 227–232.

    Google Scholar 

  • Lane, DJ., D.A. Stahl, G.J. Olsen, DJ. Heller, and N.R. Pace (1985) Phylogenetic analysis of the generaThiobacillus andThiomicrospira by 5S rRNA sequences. J. Bacteriol. 163, 75–81.

    PubMed  CAS  Google Scholar 

  • Lane, DJ., A.P. Harrison, D.A. Stahl, B. Pace, S.J. Giovannoni, G.J. Olsen, and N.R. Pace (1992) Evolutionary relationships among sulfur-and iron-oxidizing bacteria. J. Bacteriol. 174, 269–278.

    PubMed  CAS  Google Scholar 

  • Liesack, W. and E. Stackebrandt (1992) Occurence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174, 5072–5078.

    PubMed  CAS  Google Scholar 

  • Lohff, C. J. and K. B. Cease (1992) PCR using a thermostable polymerase with 3‘ to 5’ exonuclease activity generates blunt products suitable for direct cloning. Nucl. Acids Res. 20, 144.

    Article  PubMed  CAS  Google Scholar 

  • Markosyan, G.E. (1972) A new acidophilic iron bacteriumLeptospirillum ferrooxidans. Biol. Zh. Armenii. 25, 26–29.

    Google Scholar 

  • Marsh, R.M. and P.R. Norris (1983) The isolation of some thermophilic, autotrophic, iron-and sulfur-oxidizing bacteria. FEMS Microbiol. Lett. 17,311–315.

    Article  Google Scholar 

  • Norris, P.R. (1983) Iron and mineral oxidation withLeptospirillum ferrooxidans ,in “Progress in Biohydrometallurgy 1983, Cagliari,” (G. Rossi and A.E. Torma, Eds.), pp. 83–96. Associazione Mineraria Sarda, Italy.

    Google Scholar 

  • Olsen, G.J., R. Overbeek, N. Larsen, T.L. Marsh, M.J. McCaughey, M.A. Maciukenas, W.K. Kuan, T.J. Macke and C.R. Woese (1992). The ribosomal database project. Nucl. Acids Res. 20 (Supplement), 2199–2200.

    Article  PubMed  CAS  Google Scholar 

  • Pronk, J.T., R. Meulenberg, W. Hazeu, P. Bos, J.G. Kuenen (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol. Lett. 75:293–306.

    Article  CAS  Google Scholar 

  • Rainey, F.A., M. Dorsch, H.W. Morgan, and E, Stackebrandt (1992) 16S rDNA analysis ofSpirochaeta thermophilia: its phylogenetic position and implications for the systematics of the orderSpirochaetales. System. Appl. Microbiol. 15, 197–202.

    Article  CAS  Google Scholar 

  • Sand, W., K. Rohde, B. Sobotke, and C. Zenneck (1992) Evaluation ofLeptospirillum ferrooxidans for leaching. Appl. Environ. Microbiol. 58, 85–92.

    PubMed  CAS  Google Scholar 

  • Sommerville, C.C., I.T. Knight, W.L. Straube and R.R. Colwell (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Environ. Microbiol. 55, 548–554.

    Google Scholar 

  • Southam, G. and JJ. Beveridge (1992) Enumeration of thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl. Environ. Microbiol. 58, 1904– 1912.

    PubMed  CAS  Google Scholar 

  • Tuovinen, O.H., B.C. Kelley, and S.N. Groudev (1991) Mixed cultures in biological leaching processes and mineral biotechnology, in “Mixed Cultures in Biotechnology” (J.G. Zeikus and E.A. Johnson, Eds.) pp. 373–427. McGraw-Hill, New York.

    Google Scholar 

  • Wakao, N., M. Mishina, Y. Sakurai, and H. Shiota (1984) Bacterial pyrite oxidation III. Adsorption ofThiobacillus ferrooxidans cells on solid surfaces and its effect on iron release from pyrite. J. Gen. Appl. Microbiol. 30, 63–77.

    Article  CAS  Google Scholar 

  • Ward,D.M. R. Weiler and M.M. Bateson (1990) 16S rRNA sequences reveal uncultured inhabitants of a well studied thermal community. FEMS Microbiol. Rev. 75, 105–116.

    Article  CAS  Google Scholar 

  • Weisberg W.G. S.M.Barns D.A. Pelletier and D.J. Lane (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    Google Scholar 

  • Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51, 221–271.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goebel, B.M., Stackebrandt, E. (1994). The Biotechnological Importance of Molecular Biodiversity Studies for Metal Bioleaching. In: Priest, F.G., Ramos-Cormenzana, A., Tindall, B.J. (eds) Bacterial Diversity and Systematics. Federation of European Microbiological Societies Symposium Series, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1869-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1869-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5760-5

  • Online ISBN: 978-1-4615-1869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics