Skip to main content

Alkaliphiles: Diversity and Identification

  • Chapter
Bacterial Diversity and Systematics

Abstract

Micro-organisms that grow in hostile or extreme environments are currently a popular subject for study. The fascination with so-called ‘extremophiles’ reflects a perceived microbial biotechnological importance and a desire to investigate possible early conditions on Earth and the origins of life. Extremes of pH represent a particularly hostile regime for microbial life, especially when combined with extremes of salinity or temperature.This review deals with some of the aspects of micro-organisms that inhabit environments in the alkaline range of the pH spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-el-Malek, Y. and Rizk, S.G. (1963) Bacterial sulphate reduction and the development of alkalinity. III. Experiments under natural conditions in the Wadi Natrûn. J. Appl. Bact. 26, 20–26.

    Article  CAS  Google Scholar 

  • Abram, J.W. and Nedwell, D.B. (1978) Inhibition of methanogenesis by sulphate-reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 11789–92.

    Article  PubMed  CAS  Google Scholar 

  • Akiba, T. and Horikoshi, K. (1978) Localization of α-galactosidase in an alkalophilic strain of Micrococcus. Agric. Biol. Chem. 44, 2741–2742.

    Article  Google Scholar 

  • Alexander, B. and Priest, F.G. (1990) Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae. J. Gen. Microbiol. 136, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Ash, C, Farrow, J.A.E., Wallbanks, S. and Collins, M.D. (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit ribosomal RNA sequences. Lett, in Appl. Microbiol. 13202–206.

    Article  CAS  Google Scholar 

  • Baker, B.H. (1958) Geology of the Magadi area. Geological Survey of Kenya, Rep. No. 42, Government Printer, Nairobi.

    Google Scholar 

  • Baker, B.H. (1986) Tectonics and volcanism of the southern Kenya Rift Valley and its influence on rift sedimentation, in “Sedimentation in the African Rifts” (Frostick, L.E., Renaut, R.W., Reid, I. and Tiercelin, J.J., Eds.), Geol. Soc. Spec. Publ., No. 25, Blackwell Scientific, Oxford.

    Google Scholar 

  • Barnes, I., Rapp, J.B., O’Neil, J.R., Sheppard, R.A. and Gude, A.J. (1972) Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization. Contrib. Mineral. Petrol. 35, 263–276.

    Article  CAS  Google Scholar 

  • Barnes, I., O’Neil, J.R. and Trescares, J.J. (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta 42, 144–145.

    Article  CAS  Google Scholar 

  • Barnes, I., Presser, T.S., Saines, M., Dickson, P. and Van Goos, A.F.K. (1982) Geochemistry of highly basis calcium hydroxide groundwater in Jordan. Chem. Geol. 35, 147–154.

    Article  CAS  Google Scholar 

  • Bath, A.H., Christof!, N., Neal, C., Philp, J.C., Cave, M.R., McKinley, I.G. and Berner, U. (1987) Trace element and microbiological studies of alkaline groundwaters in Oman, Arabian Gulf: a natural analogue for cement pore waters. Rep. Fluid Processes Res. Group, Brit. Geol. Surv. FLPU 87–2.

    Google Scholar 

  • Beadle, L.C. (1932) Scientific results of the Cambridge Expedition to the East African Lakes 1930. IV. The water of some East African lakes in relation to their flora and fauna. J. Linn. Soc. Zool. 38157–211.

    Article  Google Scholar 

  • Blotevogel, K-H., Fischer, U., Mocha, M. andJannsen, S. (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol. 142 211–217.

    Article  CAS  Google Scholar 

  • Bolobova, A.V. and Siman’kova, M.V. (1992) Cellulase complex of a new halophilic bacterium Halocella cellulolytica. Mikrobiologiya (Eng. translation), 61, 557–562.

    Google Scholar 

  • Boone, D.R., Worakit, S., Mathrani, I.M. and Man, R.A. (1986) Alkaliphilic methanogens from high-pH lake sediments. Syst. Appl. Microbiol. 7, 230–234.

    Article  Google Scholar 

  • Brennan, P.J. (1988) Mycobacterium and other actinomycetes, in “Microbial Lipids” vol. 1 (Ratledge, C. and Wilkinson, S.G., Eds.), pp.204–298, Academic Press, London.

    Google Scholar 

  • Casanova, J. (1986) East African rift stromatolites, in “Sedimentation in the African Rifts” (Frostick, L.E., Renaut, R.W., Reid, I. and Tiercelin, J.J., Eds.), Geol. Soc. Spec. Publ., No. 25, Blackwell Scientific, Oxford.

    Google Scholar 

  • Caumette, P., Cohen, Y. and Matheron, R. (1991) Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst. Appl. Microbiol. 14,33–38.

    Article  Google Scholar 

  • Cerny, G. (1976) Method for the distiction of Gramnegative from Grampositive bacteria. Eur. J. Appl. Microbiol. 3, 223–225.

    Article  Google Scholar 

  • Cerny, G. (1978) Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. Eur. J. Appl. Microbiol. 5, 113–122.

    Article  CAS  Google Scholar 

  • Collins, M.D. and Jones, D. (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354.

    PubMed  CAS  Google Scholar 

  • Collins, M.D., Lund, B.M., Farrow, J.A.E. and Schleifer, K.H. (1983) Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. J.Gen. Microbiol. 129, 2037–2042.

    CAS  Google Scholar 

  • De Rosa, M., Gambacorta, A., Nicolaus, B. and Grant, W.D. (1983) A C25,C25 diether core lipid from archaebacterial haloalkaliphiles. J. Gen. Microbiol. 129, 2333–2337.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Grant, W.D., Lanzotti, V. and Nicolaus, B. (1988) Polar lipids and glycine betaine in haloalkaliphilic archaebacteria. J. Gen. Microbiol. 134, 205–211.

    Google Scholar 

  • Dussault, H.P. (1955) An improved technique for staining red halophilic bacteria. J. Bacteriol. 70, 484–485.

    PubMed  CAS  Google Scholar 

  • Eugster, H.P. (1970) Chemistry and origins of the brines of Lake Magadi, Kenya. Mineral. Soc. Amer., Spec. Pap. 3, 213–235.

    Google Scholar 

  • Eugster, H.P. (1986) Lake Magadi, Kenya: a model for rift valley hydrochemistry and sedimentation?, in “Sedimentation in the African Rifts” (Frostick, L.E., Renaut, R.W., Reid, I. and Tiercelin, J.J., Eds.), Geol. Soc. Spec. Publ., No. 25, Blackwell Scientific, Oxford.

    Google Scholar 

  • Eugster, H.P. and Hardie, L. A. (1978) Saline lakes, in “Lakes: Chemistry, Geology and Physics” (Lermann, A., Ed.), pp.237–293, Springer-Verlag, New York.

    Google Scholar 

  • Fendrich, C, Hippe, H. and Gottschalk, G. (1990) Clostridium halophilium sp. nov. and C. litoralesp. nov., an obligate halophilic and marine species degrading betaine in the Stickland reaction. Arch. Microbiol. 154, 127–132.

    Article  CAS  Google Scholar 

  • Florenzano, G., Sili, C, Pelosi, E. and Vincenzini, M. (1985) Cyanospira rippkae and Cyanospira capsulatus (gen. nov. sp. nov.), a new filementous heterocystous cyanobacterium from Lake Magadi (Kenya). Arch. Microbiol. 140,301–307.

    Article  Google Scholar 

  • Fritze, D., Flossdorf, J. and Claus, D. (1990) Taxonomy of alkaliphilic Bacillus strains. Int. J. Syst. Bacteriol. 40, 92–97.

    Article  PubMed  CAS  Google Scholar 

  • Gee, J.M., Lund, B.M., Metcalf, G. and Peel, J.L. (1980) Properties of a new group of alkalophilic bacteria. J.Gen. Microbiol. 117, 9–17.

    Google Scholar 

  • Gordon, R.E. and Hyde, J.L. (1982) The Bacillus firmus -Bacillus lentus complex and pH 7.0 variants of some alkalophilic strains. J. Gen. Microbiol. 128, 1109–1116.

    Google Scholar 

  • Grant, W.D. (1989) Natronobacterium, Natronococcus, in “Bergey’s Manual of Systematic Bacteriology”, vol. 3 (Staley, J.T., Bryant, M.P., Pfennig, N and Holt, J.G., Eds.), pp. 2230–2233, Williams and Williams, Baltimore.

    Google Scholar 

  • Grant, W.D. (1992) Alkaline environments in “Encyclopedia of Microbiology”, volume 1 (Lederberg, J., Ed.), Academic Press, San Diego.

    Google Scholar 

  • Grant, W.D. and Horikoshi, K. (1989) Alkaliphiles, in “Microbiology of Extreme Environments and its Potential for Biotechnology” (Da Costa, M.S., Duarte, J.C. and Williams, R.A.D., Eds.), pp.346– 366, Elsevier, London and New York.

    Google Scholar 

  • Grant, W.D. and Horikoshi, K. (1992) Alkaliphiles: ecology and biotechnological applications, in “Molecular Biology and Biotechnology of Extremophiles” (Herbert, R.A. and Sharpe, R.J., Eds.), pp. 143–162, Blackie, Glasgow and London.

    Chapter  Google Scholar 

  • Grant, W.D. and Larsen, H. (1989) Order Halobacteriales, in “Bergey’s Manual of Determinative Bacteriology”, vol. 3 (Staley, J.T., Bryant, M.P., Pfennig, N. and Holt, Eds.), pp.2216–2234, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Grant, W.D. and Mwatha, W.E. (1989) Bacteria from alkaline, saline environments, in “Recent Advances in Microbial Ecology” (proceedings of the 5th International Symposium on Microbial Ecology, Kyoto, Japan)( Hattori, T., Ishida, Y., Maruyama, Y., Morita, R.Y. and Uchida, A., Eds.), pp.64–67, Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Grant, W.D. and Tindall, B.J. (1980) The isolation of alkalophilic bacteria, in Microbial Growth and Survival in Extremes of Environment (Gould, G.W. and Corry, J.G.L., Eds.), pp.27–36, Academic Press, London.

    Google Scholar 

  • Grant, W.D. and Tindall, B.J. (1986) The alkaline, saline environment, in “Microbes in Extreme Environments” (Herbert, R.A. and Codd, G.A., Eds.), pp.22–54, Academic Press, London.

    Google Scholar 

  • Grant, W.D., Mwatha, W.E. and Jones, B.E. (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol. Rev. 75, 255–270.

    Article  CAS  Google Scholar 

  • Gregersen, T. (1978) Rapid method for distinction of Gram-negative fron Gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 5, 123–127.

    Article  Google Scholar 

  • Halebian, S., Harris, B., Finegold, S.M. and Rolfe, R.D. (1981) Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J. Clin. Microbiol. 13, 444–448.

    PubMed  CAS  Google Scholar 

  • Hardie, L.A. and Eugster, H.P. (1970) The evolution of closed basin brines. Mineral. Soc. Amer., Spec. Pap. 3. 273–296.

    Google Scholar 

  • Hecky, R.E. and Kilham, P. (1973) Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol. Oceanogr. 18, 53–71.

    Article  CAS  Google Scholar 

  • Horikoshi, K. (1991) “Microorganisms in Alkaline Environments”, Kodansha, Tokyo and VCH Verlagsgesellschaft mbH, Weinheim, New York, Cambridge, Basel.

    Google Scholar 

  • Imhoff, J.F., Sahl, H.G., Soliman, G.S.H. and Trüper, H.G. (1979) The Wadi Natrûn: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol. J. 1, 219– 234.

    Article  CAS  Google Scholar 

  • Iversen, N., Oremland, R.S. and Klug, M.J. (1987) Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32, 804–814.

    Article  CAS  Google Scholar 

  • Javor, B. (1989) “Hypersaline Environments”, Brock/Springer, Berlin and New York.

    Book  Google Scholar 

  • Jenkin, P.M. (1932) Reports of the Percy Sladen Expedition to some Rift Valley Lakes in Kenya in 1929. VII. Summary of the ecological results with special reference to the alkaline lakes. Ann. Mag. Nat. Hist. Ser. X, 8, 133–181.

    Google Scholar 

  • Jones, B.E. and Grant, W.D. (1993) Haloalkaliphilic microorganisms. European PatentApplication 0540 127 A1.

    Google Scholar 

  • Jones, B.E., Grant, W.D. and Collins, N.C. (1992) Gram-negative alkaliphilic microorganisms. European Patent Application 0473 217 A1.

    Google Scholar 

  • Jones, B.E., Grant, W.D. and Collins, N.C. (1993) Gram-positive alkaliphilic microorganisms. European Patent Application 0523 769 A1.

    Google Scholar 

  • Jones, B.F., Eugster, H.P. and Rettig, S.L. (1977) Hydrochemistry of the Lake Magadi basin, Kenya. Geochim. Cosmochim. Acta. 41, 53–72.

    Article  CAS  Google Scholar 

  • Kandier, O. (1993) Archaea (archaebacteria). Progress in Botany, 54, 1–24.

    Google Scholar 

  • Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A. and Lipp, A. (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349, 605–608.

    Article  Google Scholar 

  • Kevbrin, V.V. and Zavarzin, G.A. (1992) Effect of sulfur compounds on the growth of the halophilic homacetic bacterium Acetohalobium arabaticum. Mikrobiologiya (Eng. translation), 61, 563–567.

    Google Scholar 

  • Kiene, R.P., Oremland, R.S., Catena, A., Miller, L.G. and Capone, D.G. (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52, 1037–1045.

    PubMed  CAS  Google Scholar 

  • Kilham, P. (1981) Pelagic bacteria: extreme abundance in African saline lakes. Naturwissenschaften 68, 380– 381.

    Article  Google Scholar 

  • Kimura, T. and Horikoshi, K. (1990) The nucleotide sequence of an α-amylase gene from an alkalopsychrotrophic Micrococcus sp. FEMS Microbiol. Lett. 71, 35–42.

    CAS  Google Scholar 

  • King, G.M. (1988) Methanogenesis from methylated amines in a hypersaline algal mat. Appl. Environ. Microbiol. 54, 130–136.

    PubMed  CAS  Google Scholar 

  • Kita-Tsukamoto, K., Oyaizu, H., Nanbak and Shimizu, U. (1993) Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol. 43, 8–19.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, Y. and Horikoshi, K. (1980) Identification and growth characteristics of alkalophilic Corynebacterium sp. which produces NAD(P)-dependent maltose dehydrogenase and glucose dehydrogenase. Agric. Biol. Chem. 44, 2261–2269.

    Article  CAS  Google Scholar 

  • Kotelnikova, S.V., Obraztsova, A.Y., Blotevogel, K-H. and Popov, I.N. (1993) Taxonomic analysis of thermophilic strains of the genus Methanobacterium: reclassification of Methanobacterium thermoalcaliphilum as a synonym of Methanobacterium thermoautotrophicum. Int. J. Syst. Bacteriol. 43, 591–596.

    Article  Google Scholar 

  • Langworthy, T.A. (1978) Microbial life in extreme pH values, in “Microbial life in Extreme Environments” (Kushner, DJ., Ed.), pp.318–368, Academic Press, London and New York.

    Google Scholar 

  • Lanzotti, V., Nicolaus, B., Trincone, A., De Rosa, M., Grant, W.D. and Gambacorta, A. (1989) A complex lipid with a cyclic phosphate from the archaebacterium Natronobacterium occultus. Biochim. Biophys. Acta 1001, 31–34.

    Article  CAS  Google Scholar 

  • Li, Y., Mandelco, L. and Wiegel, J. (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol. 43, 450–460.

    Article  Google Scholar 

  • Liu, Y., Boone, D.R. and Choy, C. (1990) Methanohalophilus oregonense sp. nov., a methyltrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40, 111–116.

    Article  Google Scholar 

  • Lodwick, D., Ross, H.N.M., Walker, J.A., Almond, J.W. and Grant, W.D. (1991) Nucleotide sequence of the 16S ribosomal RNA gene from the haloalkaliphilic archaeon (archaebacterium) Natronobacterium magadii ,and the phylogeny of halobacteria. Syst. Appl. Microbiol. 14, 352–357.

    Article  CAS  Google Scholar 

  • Ma, Y., Tian, X., Zhou, P. and Wang, D. (1992) A new alkaliphilic bacterium. Abs. 6th Int. Symp. Microbial Ecol., Barcelona, Spain.

    Google Scholar 

  • Mathrani, I.M., Boone, D.R., Mah, R.A., Fox, G.E. and Lau, P.P. (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol. 38, 139–142.

    Article  PubMed  CAS  Google Scholar 

  • McGenity, T.J. and Grant, W.D. (1993) The haloalkaliphilic archaeon (archaebacterium) Natronococcus occultus represents a distinct lineage within the Halobacteriales ,most closely related to the other haloalkaliphilic lineage (Natronobacterium). Syst. Appl. Microbiol. 16, 239–243.

    Article  CAS  Google Scholar 

  • Melack, J.M. (1981) Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologicia 81, 71–86.

    Article  Google Scholar 

  • Melack, J.M. and Kilham, P. (1974) Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 19, 743–755.

    Article  CAS  Google Scholar 

  • Morth, S. and Tindall, B.J. (1985) Variation of polar lipid composition within haloalkaliphilic archaebacteria. Syst. Appl. Microbiol. 6, 247–250.

    Article  CAS  Google Scholar 

  • Mwatha, W.E. (1991) Microbial Ecology of Kenyan Soda Lakes. Ph.D. Thesis, University of Leicester.

    Google Scholar 

  • Mwatha, W.E. and Grant, W.D. (1993) Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int. J. Syst. Bacteriol. 43, 401–404.

    Article  Google Scholar 

  • Nakatsugawa, N. (1991) Novel methanogenic archaebacteria which grow in extreme environments, in “Superbugs: Microorganisms in Extreme Environments” (Horikoshi, K. and Grant, W.D., Eds.) pp.212–220, Japan Scientific Societies Press, Tokyo and Springer-Verlag, Berlin, Heidelberg and New York.

    Google Scholar 

  • Nakatsugawa, N. and Horikoshi, K. (1989) Isolation and charcterisation of two novel methanogens, a new haloalkaliphilic methanogen and a new alkaliphilic Methanosarcina ,in “Microbiology of Extreme Environments and its Potential for Biotechnology” (Da Costa, M.S., Duarte, J.C. and Williams, R.A.D., Eds.), p.415, Elsevier, London and New York.

    Google Scholar 

  • Nakatsugawa, N. and Horikoshi, K. (1991) Extremely halophilic methanogenic archaebacteria. U.S. Patent 5,055,406.

    Google Scholar 

  • Nehrkorn, A. and Schwartz, W. (1961) Untersuchungen über lebensgemeinschaften halophiler Mikroorganismen. 1. Mikoorganismen aus Salzseen der californischen Wüstengebiete und aus einer Natriumchloride-Sole. Zeitschrift für Allg. Mikrobiol. 1, 121–141.

    Article  CAS  Google Scholar 

  • Norton, C.F. and Grant, W.D. (1988) Survival of halobacteria within fluid inclusions in salt crystals. J. Gen. Microbiol. 134, 1365–1373.

    Google Scholar 

  • Ohkoshi, A., Kudo, T., Mase, T. and Horikoshi, K. (1985) Purification of three types of xylanases from an alkalophilic Aeromonas sp. Agric. Biol. Chem. 49, 3037–3038.

    Article  CAS  Google Scholar 

  • Ollivier, B., Hatchikian, C.E., Prensier, G., Guezennec, J and Garcia, J.-L. (1991) Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41, 74–81.

    Article  CAS  Google Scholar 

  • Oremland, R.S., Marsh, L. and Des Marais, D.J. (1982) Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake. Appl. Environ Microbiol. 43, 462–468.

    PubMed  CAS  Google Scholar 

  • Oremland, R.S., Miller, L.G. and Whiticar, M.J. (1987) Sources and flux of natural gases from Mono Lake, California. Geochim. Cosmochim. Acta, 51, 2915–2929.

    Article  CAS  Google Scholar 

  • Oren, A. (1986) The ecology and taxonomy of anaerobic halophilic eubacteria. FEMS Microbiol. Rev. 39, 23–29.

    Article  Google Scholar 

  • Pantazis, T.M. (1976) Thermal mineral waters of Cyprus, in “Proceedings International Congress on Thermal Waters, Geothermal Energy and Volcanism, Mediterranean area”, Vol. 2. pp.367–386, Athens.

    Google Scholar 

  • Paterek, J.R. and Smith, P.H. (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophichalophilic methanogen. Int. J. Syst. Bacteriol. 38, 122–123.

    Article  Google Scholar 

  • Priest, F.G. and Alexander, B. (1988) A frequency matrix for probabilstic identification of some bacilli. J. Gen. Microbiol. 134, 3011–3018.

    PubMed  CAS  Google Scholar 

  • Randall, D.J., Wood, C.M., Perry, S.F., Bergman, H., Maloiy, G.M.O., Mommsen, T.P. and Wright, P.A. (1989) Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337, 165–166.

    Article  PubMed  CAS  Google Scholar 

  • Renaut, R.W., Tiercelin, J.J. and Owen, R.B. (1986) Mineral precipitation and diagenesis in the sediments of the Lake Bogoria basin, Kenya Rift Valley, in “Sedimentation in the African Rifts” (Frostick, L.E., Renaut, R.W., Reid, I. and Tiercelin, J.J., Eds.), Geol. Soc. Spec. Publ., No. 25, Blackwell Scientific, Oxford.

    Google Scholar 

  • Rich, F. (1933) Scientific results of the Cambridge Expedition to the East African lakes 1930. VII. The algae. J. Linn. Soc. Zool. 38, 249–275.

    Article  Google Scholar 

  • Sackin, M.J. (1987) Programmes for classification and identification, in “Methods in Microbiology”, vol. 19 (Colwell, R.R. and Grigorova, R., Eds.), pp.459–494, Academic Press, London.

    Google Scholar 

  • Shiba, H. (1989) Haloalcalibium sporogenum gen. nov., sp. nov. and Haloalcalibium grantii sp. nov., a new type of facultatively anaerobic, haloalkaliphilic eubacteria. Abs. Superbugs Symp. “Microbial Life in Extreme Environments”, Tokyo.

    Google Scholar 

  • Shiba, H. and Horikoshi, K. (1989) Isolation and characterization of novel anaerobic, halophilic eubacteria from hypersaline environments of western America and Kenya, in “Microbiology of Extreme Environments and its Potential for Biotechnology” (Da Costa, M.S., Duarte, J.C. and Williams, R.A.D., Eds.), pp.371–374, Elsevier, London.

    Google Scholar 

  • Soliman, G.S.H. and Trüper, H.G. (1982) Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zbl. Bakt. Hyg., I. Abt. Orig. C 3, 318–329.

    CAS  Google Scholar 

  • Souza, K.A. and Deal, P.H. (1977) Characterization of a novel extremely alkalophilic bacterium. J. Gen. Microbiol. 101, 103–109.

    Article  Google Scholar 

  • Souza, K.A., Deal, P.H., Mack, H.M. and Turnbull, C.E. (1974) Growth and reproduction of microorganisms under extremely alkaline conditions. Appl. Microbiol. 28, 1066–1068.

    PubMed  CAS  Google Scholar 

  • Spanka, R. and Fritze, D. (1993) Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int. J. Syst. Bacteriol. 43, 150–156.

    Article  PubMed  CAS  Google Scholar 

  • Strand, S.E., Dykes, J. and Chiang, V. (1984) Aerobic microbial degradation of glucoisosaccharinic acid. Appl. Environ. Microbiol. 47, 268–271.

    PubMed  CAS  Google Scholar 

  • Tailing, J.F., Wood, R.B., Prosser, M.V. and Baxter, R.M. (1973) The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwater Biol. 3, 53–76.

    Article  Google Scholar 

  • Tindall, B.J. (1988) Prokaryotic life in the alkaline, saline, athalassic environment, in “Halophilic Bacteria” vol. 1 (Rodriguez-Valera, F., Ed.), pp.31–67, CRC Press, Inc., Boca Raton, Fl.

    Google Scholar 

  • Tindall, B.J. (1992) The Familily Halobacteriaceae, in “The Prokaryotes”, 2nd edition, vol. 1 (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K-H., Eds.), pp.768–808, Springer-Verlag, New York.

    Google Scholar 

  • Tindall, B.J., Mills, A.A. and Grant, W.D. (1980) An alkalophilic red halophilc bacterium with a low magnesium requirement from a Kenyan soda lake. J. Gen. Microbiol. 116, 257–260.

    Google Scholar 

  • Tindall, B.J., Ross, H.N.M. and Grant, W.D. (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst. Appl. Microbiol. 5, 41–57.

    Article  Google Scholar 

  • Tsujibo, H., Sato, T., Inui, M., Yamamoto, H. and Inamori, Y. (1988) Intracellular accumulation of phenazine antibiotics, production by an alkalophilic actinomycete. Agric. Biol. Chem. 52, 301–306.

    Article  CAS  Google Scholar 

  • Upasani, V. and Desai, S. (1990) Sambhar salt lake: chemical composition of the brines and studies on haloalkaliphilic archaebacteria. Arch. Microbiol. 154, 589–593.

    Article  CAS  Google Scholar 

  • Urakami, T., Tamaoka,J., Suzuki, K-I. and Komagata, K. (1989) Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int. J. Syst. Bacteriol. 39, 116–121.

    Article  Google Scholar 

  • Vedder, A. (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Ant. van Leeuwen. 1, 141–147.

    Article  Google Scholar 

  • Vreeland, R.H. (1992) The family Halomonadaceae, in “The Prokaryotes”, 2nd edition, vol. 4 (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K-H., Eds.), pp.3181–3188, Springer-Verlag, New York.

    Google Scholar 

  • Wang, D. and Tang, Q. (1989) Natronobacterium from soda lakes of China, in “Recent Advances in Microbial Ecology” (proceedings of the 5th International Symposium on Microbial Ecology, Kyoto, Japan) (Hattori, T., Ishida, Y., Maruyama, Y., Morita, R.Y. and Uchida, A., Eds.), pp.68–72, Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Waring, G.A., Blankenship, R.R. and Bentall, R. (1965) Thermal Springs of the United States and Other Countries of the World -a Summary. Geol. Surv. Prof. Paper 492, US Government Printing Office, Washington.

    Google Scholar 

  • Watanabe, N., Ota, Y., Minoda, Y. and Yamada, K. (1977) Isolation and identification of some alkaline lipase producing microorganisms, culture conditions and some properties of crude enzymes. Agric. Biol. Chem. 41, 1353–1358.

    Article  CAS  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    PubMed  CAS  Google Scholar 

  • Whitman, W.B., Bowen, T.L. and Boone, D.R. (1992) The methanogenic bacteria, in “The Prokaryotes” 2nd edition, vol. 1 (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K-H., Eds.), pp.719–767, Springer-Verlag, New York.

    Google Scholar 

  • Wilharm, T., Zhilina, T.N. and Hummel, P. (1991) DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilusvp to the genus Methanohalophilus as Methanohalophilus halophilus comb. nov. Int. J. Syst. Bacteriol. 41, 558–562.

    Article  Google Scholar 

  • Wilkinson, S.G. (1988) Gram-negative bacteria, in “Microbial Lipids” vol. 1 (Ratledge, C. and Wilkinson, S.G., Eds.), pp.299–488, Academic Press, London.

    Google Scholar 

  • Williams, S.T., Goodfellow, M., Wellington, E.M.H., Vickers, J.C., Alderson, G., Sneath, P.H.A., Sackin, M.J. and Mortimer, A.M. (1983) A probability matrix for identification of some Streptomycetes. J. Gen. Microbiol. 129, 1815–1830.

    PubMed  CAS  Google Scholar 

  • Winfrey, M.R. and Zeikus, J.G. (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol. 33, 275–281.

    PubMed  CAS  Google Scholar 

  • Woese, C.R., Weisburg, W.G., Hahn, CM., Paster, B.J., Zahlen, L.B., Lewis, B.J., Macke, T.J., Ludwig, W. and Stackebrandt, E. (1985) The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6, 25–33.

    Article  CAS  Google Scholar 

  • Worakit, S., Boone, D.R., Mah, R.A., Abdel-Samie, M-E. and El-Halwagi, M.M. (1986) Methanobacterium alcaliphilum sp.nov., an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol. 36, 380–382.

    Article  Google Scholar 

  • Zhilina, T.N. and Zavarzin, G.A. (1990) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87, 315–322.

    Article  CAS  Google Scholar 

  • Zhilina, T.N., Zavarzin, G.A., Bulygina, E.S., Kevbrin, V.V., Osipov, G.A. and Chumakov, K.M. (1992) Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincula saccharolytica gen. nov., sp. nov. Syst. Appl. Microbiol. 15, 275–284.

    Article  Google Scholar 

  • Zinder, S.H., Doemel, W.N. and Brock, T.D. (1977) Production of volatile sulfur compounds during decomposition of algal mats. Appl. Environ. Microbiol. 34, 859–860.

    PubMed  CAS  Google Scholar 

  • Zvyagintseva, I.S. and Tarasov, A.L. (1988) Extreme halophilic bacteria from saline soils. Microbiologiya (Eng. Translation), 56, 664–669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, B.E., Grant, W.D., Collins, N.C., Mwatha, W.E. (1994). Alkaliphiles: Diversity and Identification. In: Priest, F.G., Ramos-Cormenzana, A., Tindall, B.J. (eds) Bacterial Diversity and Systematics. Federation of European Microbiological Societies Symposium Series, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1869-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1869-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5760-5

  • Online ISBN: 978-1-4615-1869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics