Skip to main content

NMR Methods for Measuring Membrane Transport

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 23))

Abstract

The aim of this chapter is to outline the reasons why certain items of information are sought for a description of membrane transport, to describe the various types of NMR experiment that can be used to obtain estimates of the rates of membrane transport, and to illustrate the various NMR procedures with biological examples. The major appeal of the NMR method in this context lies in the fact that the measurements do not usually require the physical separation of the cells or vesicles from their suspending solution. The work described here is a subset of the large number of NMR studies that have been carried out in recent years on living systems (for reviews see Shulman, 1979; Gadian and Radda, 1981; Kuchel, 1981, 1989; Gadian, 1982; Avison et al., 1986; Cerdan and Seelig, 1990; Lundberg et al., 1990). NMR studies of membrane transport have recently been reviewed (Kirk, 1990; Kuchel, 1990; King and Boyd, 1991); the first two reviews are directed mostly at “NMR audiences” and the latter to “biological audiences.” It is the intention that this chapter might be useful to readers who are NMR experts as well as those who are not; the latter may be encouraged to try the NMR counterparts of more conventional experiments and the former may find something of interest in these newer applications of NMR spectroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, E. W., Coston, T.P.J., Orrell, K. G., Sik, V., and Stephenson, D., 1986, Two-dimensional NMR exchange spectroscopy. Quantitative treatment of multisite exchanging systems, J. Magn. Resort. 70:34–53.

    CAS  Google Scholar 

  • Abragam, A., 1978, The Principles of Nuclear Magnetism, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Akitt, J. W., 1983, NMR and Chemistry: An Introduction to the Fourier Transform-Multinuclear Era, 2nd ed., Chapman&Hall, London.

    Google Scholar 

  • Alger, J. R., and Prestegard, J. H., 1979, Nuclear magnetic resonance study of acetic acid permeation of large unilamellar vesicle membranes, Biophys. J. 28:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Alger, J. R., and Shulman, R. G., 1984, NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer, Q. Rev. Biophys. 17:83–124.

    Article  PubMed  CAS  Google Scholar 

  • Allis, J. L., Dixon, R. M., Till, A. M., and Radda, G. K., 1989, 87Rb NMR studies for the evaluation of K+ fluxes in human erythrocytes, J. Magn. Reson. 85:524–529.

    CAS  Google Scholar 

  • Allis, J. L., Dixon, R. M., and Radda, G. K., 1990, A study of transverse relaxation of 87Rb in agarose gels by triple-quantum filtration, J. Magn. Reson. 90:141–147.

    CAS  Google Scholar 

  • Anderson, S. E., Adorante, J. S., and Cala, P. M., 1988, Dynamic NMR measurement of volume regulatory changes in Amphiuma RBC Na+ content, Am. J. Physiol. 254:C466–C474.

    PubMed  CAS  Google Scholar 

  • Andrasko, J., 1976a, Measurement of membrane permeability to slowly perrmeating molecules by a pulse gradient NMR method, J. Magn. Reson. 21:479–484.

    CAS  Google Scholar 

  • Andrasko, J., 1976b, Water diffusion permeability of human erythrocytes studied by a pulsed field gradient NMR technique, Biochim. Biophys. Acta 428:304–311.

    Article  PubMed  CAS  Google Scholar 

  • Andrew, E. R., 1990, Magnetic resonance imaging, Int. J. Mod. Phys. B 4:1269–1281.

    Article  Google Scholar 

  • Arnold, J. T., 1956, Magnetic resonance of protons in ethyl alcohol, Phys. Rev. 102:136–150.

    Article  CAS  Google Scholar 

  • Ashley, D. L., and Goldstein, J. H., 1980, The application of dextran magnetite as a relaxation agent in the measurement of water exchange using pulsed nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 97:114–120.

    Article  PubMed  CAS  Google Scholar 

  • Avison, M. J., Hetherington, H. P., and Shulman, R. G., 1986, Applications of NMR to studies of tissue metabolism, Annu. Rev. Biophys. Biophys. Chem. 15:377–402.

    Article  PubMed  CAS  Google Scholar 

  • Baine, P., 1986, Comparison of rate constants determined by two-dimensional NMR spectroscopy with rate constants determined by other NMR techniques, Magn. Reson. Chem. 24:304–307.

    Article  CAS  Google Scholar 

  • Batley, M., and Redmond, J., 1982, 31P NMR reference standards for aqueous samples, J. Magn. Reson. 49:172–174.

    CAS  Google Scholar 

  • Bax, A., 1984, Two-Dimensional Nuclear Magnetic Resonance in liquids, Delft University Press, Dordrecht.

    Google Scholar 

  • Bendall, M. R., Pegg, D. T., and Dodrell, D. M., 1981, Polarization transfer pulse sequences for two-dimensional NMR by Heisenberg vector analysis, J. Magn. Reson. 45:8–29.

    CAS  Google Scholar 

  • Bendall, M. R., Pegg, D. T., Dodrell, D. M., and Field, J., 1983, Inverse DEPT sequence. Polarization transfer from a spin-1/2 nucleus to n spin-1/2 heteronuclei via correlated motion in the doubly rotating reference frame, J. Magn. Reson. 51:520–526.

    CAS  Google Scholar 

  • Benga, G., 1988, Water transport in red blood cell membranes, Prog. Biophys. Mol. Biol. 51:193–245.

    Article  PubMed  CAS  Google Scholar 

  • Benga, G., 1989a, Water exchange through the erythrocyte membrane, Int. Rev. Cytol. 114:273–316.

    Article  PubMed  CAS  Google Scholar 

  • Benga, G., ed., 1989b, Water Transport in Biological Membranes, Vol. 1, From Model Membranes to Isolated Cells, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Benga, G., Chapman, B. E., Gallagher, C. H., Cooper, D., and Kuchel, P. W., 1993, NMR studies of diffusional water permeability of red blood cells from macropodid marsupials (kangaroos and wallabies), Comp. Biochem. Physiol. 104A:799–803.

    Article  Google Scholar 

  • Berg, O. G., and von Hippel, P. H., 1985, Diffusion-controlled macromolecular interactions, Annu. Rev. Biophys. Biophys. Chem. 14:131–160.

    Article  PubMed  CAS  Google Scholar 

  • Beutler, E., 1984, Red Cell Metabolism: A Manual of Biochemical Methods, 3rd ed., Grune&Stratton, New York.

    Google Scholar 

  • Binsch, G. E., 1975, Band shape analysis, in: Dynamic Nuclear Magnetic Resonance Spectroscopy (L. M. Jackman and F. A. Cotton, eds.), pp. 45–81, Academic Press, New York.

    Google Scholar 

  • Bleaney, B. I., and Bleaney, B., 1983, Electricity and Magnetism, 3rd ed., Oxford University Press, London.

    Google Scholar 

  • Bloch, F., Hansen, W. W., and Packard, M., 1946, Nuclear induction, Phys. Rev. 69:127.

    Article  Google Scholar 

  • Boulanger, Y., Vinay, P., and Desroches, M., 1985, Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance, Biophys. J. 47:553–561.

    Article  PubMed  CAS  Google Scholar 

  • Brahm, J., 1977, Temperature-dependent changes of chloride transport kinetics in human red blood cells, J. Gen. Physiol. 70:283–306.

    Article  PubMed  CAS  Google Scholar 

  • Brahm, J., 1983, Urea permeability of human red cells, J. Gen. Physiol. 82:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Brauer, M., Spread, C. Y., Reithmeier, R.A.F., and Sykes, B. D., 1985, 31P and 35C1 nuclear magnetic resonance measurements of anion transport in human erythrocytes, J. Biol. Chem. 260:11643–11650.

    PubMed  CAS  Google Scholar 

  • Bremer, J., Mendz, G. L., and Moore, W. J., 1984, Skewed exchange spectroscopy. Two-dimensional method for the measurement of cross relaxation in 1H NMR spectroscopy, J. Am. Chem. Soc. 106:4691–4696.

    Article  CAS  Google Scholar 

  • Brindle, K. M., and Campbell, I. D., 1987, NMR studies of kinetics in cells and tissues, Q. Rev. Biophys. 19:159–182.

    Article  PubMed  CAS  Google Scholar 

  • Brindle, K. M., Brown, F. F., Campbell, I. D., Grathwohl, C., and Kuchel, P. W., 1979, Application of spin-echo nuclear magnetic resonance to whole-cell systems. Biochem. J. 180:37–44.

    PubMed  CAS  Google Scholar 

  • Brophy, P. J., Hayer, M. K., and Riddell, F. G., 1983, Measurement of intracellular potassium concentrations by NMR, Biochem. J. 210:961–963.

    PubMed  CAS  Google Scholar 

  • Brown, F. F., 1983, The effect of compartmental location on the proton T2* of small molecules in cell suspensions: A cellular field gradient model, J. Magn. Reson. 54:385–399.

    CAS  Google Scholar 

  • Brown, F. F., Campbell, I. D., Kuchel, P. W., and Rabenstein, D. L., 1977, Human erythrocyte metabolism studies by 1H spin echo NMR, FEBS Lett. 82:12–16.

    Article  PubMed  CAS  Google Scholar 

  • Brown, F. F., Sussman, I., Avron, M., and Degani, H., 1982, NMR studies of glycerol permeability in lipid vesicles, erythrocytes and the alga Dunaliella, Biochim. Biophys. Acta 690:165–173.

    Article  PubMed  CAS  Google Scholar 

  • Brown, F. F., Jaroszkiewicz, G., and Jaroszkiewicz, M., 1983, An NMR method for studying the intracellular distribution and transport properties of small molecules in cell suspensions: The chicken erythrocyte system, J. Magn. Reson. 54:400–418.

    CAS  Google Scholar 

  • Brown, R., 1828, in: The Encyclopaedia Britannica, 1988, Vol. 2, pp. 559–560, Encyclopaedia Britannica, Chicago.

    Google Scholar 

  • Brown, T. R., 1980, Saturation transfer in living systems, Philos. Trans. R. Soc. London Ser. B 289:441–444.

    Article  CAS  Google Scholar 

  • Brown, T. R., and Ogawa, S., 1977, 31P nuclear magnetic resonance kinetic measurements on adenylate kinase, Proc. Natl. Acad. Sci. USA 74:3627–3631.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. R., Ugurbil, K., and Shulman, R. G., 1977, 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells, Proc. Natl. Acad. Sci. USA 74:5551–5553.

    Article  PubMed  CAS  Google Scholar 

  • Bruker Almanac, 1993, Bruker Analytische Messtechnik, Karlsruhe, Germany.

    Google Scholar 

  • Bubb, W. A., Kirk, K., and Kuchel, P. W., 1988, Ethylene glycol as a thermometer for X-nucleus spectroscopy in biological samples, J. Magn. Reson. 77:363–368.

    CAS  Google Scholar 

  • Bulliman, B. T., and Kuchel, P. W., 1988, A series expression for the surface area of an ellipsoid and its application to the computation of the surface area of avian erythrocytes, J. Theor. Biol. 134:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Bulliman, B. T., Kuchel, P. W., and Chapman, B. E., 1989, ‘Overdetermined’ one dimensional NMR exchange analysis: A 1-D counterpart of the 2-D EXSY experiment, J. Magn. Reson. 82:131–138.

    CAS  Google Scholar 

  • Bulsing, J. M., Brooks, W. M., Field, J., and Doddrell, D. M., 1984, Reverse polarization transfer through matrix order multiple-quantum coherence: A reverse POMMIE sequence, Chem. Phys. Lett. 104:229–234.

    Article  CAS  Google Scholar 

  • Burum, D. P., and Ernst, R. R., 1980, Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei, J. Magn. Reson. 39:163–168.

    CAS  Google Scholar 

  • Bystrov, V. F., Dubrovina, N. I., Barsukov, L. I., and Bergelson, L. D., 1971, NMR differentiation of the internal and external phospholipid membrane surfaces using paramagnetic Mn2+ and Eu3+ ions, Chem. Phys. Lipids 6:343–348.

    Article  CAS  Google Scholar 

  • Callaghan, P. T., 1984, Pulsed field gradient nuclear magnetic resonance as a probe of liquid state molecular organisation, Aust. J. Phys. 37:359–387.

    CAS  Google Scholar 

  • Callaghan, P. T., 1991, Principles of Magnetic Resonance Microscopy, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Campbell, I. D., Dobson, C. M., Jeminet, G., and Williams, R.J.P., 1974, Pulsed NMR methods for the observation and assignment of exchangeable hydrogens: Applications to bacitracin, FEBS Lett. 49:115–119.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, I. D., Dobson, C. M., and Ratcliffe, R. G., 1977, Fourier transform NMR in H2O. A method for measuring exchange and relaxation rates, J. Magn. Reson. 27:455–463.

    CAS  Google Scholar 

  • Campbell, I. D., Dobson, C. M., Ratcliffe, R. G., and Williams, R.J.P., 1978, Fourier transform NMR pulse methods for the measurement of slow-exchange rates, J. Magn. Reson. 29:397–417.

    CAS  Google Scholar 

  • Carr, H. Y., and Purcell, E. M., 1954, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94:630–638.

    Article  CAS  Google Scholar 

  • Castle, A. M., Macnab, R. M., and Shulman, R. G., 1986, Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance, J. Biol. Chem. 261:3288–3294.

    PubMed  CAS  Google Scholar 

  • Cerdan, S., and Seelig, J., 1990, NMR studies of metabolism, Annu. Rev. Biophys. Biophys. Chem. 19:43–67.

    Article  PubMed  CAS  Google Scholar 

  • Cerdonio, M., Morantes, S., Torresani, D., Vitale, S., De Young, A., and Noble, R. W., 1985, Reexamination of the evidence for paramagnetism in oxy-and (carbonmonoxy) hemoglobins, Proc. Natl. Acad. Sci. USA 82:102–103.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, B. E., and Kuchel, P. W., 1990, Fluoride transmembrane exchange in human erythrocytes measured with 19F NMR magnetization transfer, Eur. Biophys. J. 19:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, B. E., and Kuchel, P. W., 1993, Sensitivity in heteronuclear multiple quantum diffusion experiments, J. Magn. Reson. 102:105–109.

    Article  CAS  Google Scholar 

  • Chapman, B. E., MacDermott, T. E., and O’Sullivan, W. J., 1973, Studies on manganese complexes of human serum albumin, Bioinorg. Chem. 3:27–38.

    Article  CAS  Google Scholar 

  • Chapman, B. E., Kirk, K., and Kuchel, P. W., 1986, Bicarbonate exchange kinetics at equilibrium across the erythrocyte membrane by 13C NMR, Biochem. Biophys. Res. Commun. 136:266–272.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, B. E., Stewart, I. M., Bulliman, B. T., Mendz, G. L., and Kuchel, P. W., 1988, 31P magnetization transfer in the phosphoglyceromutase-enolase coupled enzyme system, Eur. Biophys. J. 16:187–191.

    Article  PubMed  CAS  Google Scholar 

  • Cheshnovsky, D., and Navon, G., 1978, Nuclear magnetic resonance studies of carbonic anhydrase catalyzed reversible hydration of acetaldehyde by the saturation transfer method, Biochemistry 19:1866–1873.

    Article  Google Scholar 

  • Cheshnovsky, D., and Navon, G., 1980, NMR saturation transfer studies of the catalysis of the reversible hydration of acetaldehyde by carbonic anhydrase, in: Nuclear Magnetic Resonance Spectroscopy in Molecular Biology (B. Pullman, ed.), pp. 261–271, Reidel, Dordrecht.

    Google Scholar 

  • Chu, C.-K., Xu, Y., Balschi, J. A., and Springer, C. S., 1990, Bulk magnetic susceptibility in NMR studies of compartmentalized samples: Use of paramagnetic reagents, Magn. Reson. Med. 13:239–262.

    Article  PubMed  CAS  Google Scholar 

  • Chu, S. C., Pike, M. M., Fossel, E. T., Smith, T. W., Balschi, J. A., and Springer, C. S., 1984, Aqueous shift reagents for high resolution cationic nuclear magnetic resonance. III. Dy (TTHA)3-, Tm (TTHA)3- and Tm (PPP)2 7-, J. Magn. Reson. 56:33–47.

    CAS  Google Scholar 

  • Clore, G. M., Kimber, B. J., and Gronenborn, A. M., 1983, The 1-1 hard pulse: A simple and effective method of water resonance suppression in FT 1H NMR, J. Magn. Reson. 54:170–173.

    CAS  Google Scholar 

  • Conlon, T., and Outhred, R., 1972, Water diffusion permeability of erythrocytes using an NMR technique, Biochim. Biophys. Acta 288:354–361.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, T., and Outhred, R., 1978, The temperature dependence of erythrocyte water diffusion permeability, Biochim. Biophys, Acta 511:408–418.

    Article  CAS  Google Scholar 

  • Cramer, J. A., and Prestegard, J. H., 1977, NMR studies of pH-induced transport of carboxylic acids across phospholipid vesicle membranes, Biochem. Biophys. Res. Commun. 75:295–301.

    Article  PubMed  CAS  Google Scholar 

  • Crank, J., 1975, The Mathematics of Diffusion, 2nd ed. Oxford University Press (Clarendon), London.

    Google Scholar 

  • Cusler, E. L. 1986, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, London.

    Google Scholar 

  • Dacie, J. V., and Lewis, S. M., 1975, Practical Haematology, Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Dadok, J., and Sprecher, R. F., 1974, Correlation NMR spectroscopy, J. Magn. Reson. 13:243–248.

    CAS  Google Scholar 

  • Davis, D. G., Murphy, E., and London, R. E., 1988, Uptake of cesium ions by human erythrocytes and perfused rate heart: A cesium-133 NMR study, Biochemistry 27:3547–3551.

    Article  PubMed  CAS  Google Scholar 

  • Degani, H., 1978, NMR kinetic studies of the ionophore X-537A-mediated transport of manganous ions across phospholipid bilayers, Biochim. Biophys. Acta 508:364–369.

    Article  PubMed  CAS  Google Scholar 

  • Degani, H., and Lenkinski, R., 1980, Ionophoric properties of angiotensin II peptides. Nuclear magnetic resonance kinetic studies of the hormone-mediated transport of manganese ions across phosphatidylcholine bilayers, Biochemistry 19:3430–3434.

    Article  PubMed  CAS  Google Scholar 

  • Degani, H., Simon, S., and McLaughlin, A. C., 1981, The kinetics of ionophore X-537-A-mediated transport of manganese through dipalmitoylphosphatidylcholine vesicles, Biochim. Biophys. Acta 646:320–328.

    Article  PubMed  CAS  Google Scholar 

  • Degani, H., Laughlin, M., Campbell, S., and Shulman, R. G., 1985, Kinetics of creatine kinase in heart: A 31P nmr saturation-and inversion-transfer study, Biochemistry 24:5510–5516.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, C. J., and Taylor, J. S., 1987, 19F NMR measurement of intracellular pH, in: NMR Spectroscopy of Cells and Organisms (R. Gupta, ed.), pp. 55–74, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Dobbs, E. R., 1984, Electricity and Magnetism, Routledge&Kegan Paul, London.

    Google Scholar 

  • Duhm, J., and Behr, J., 1987, Role of exogenous factors in alterations of red cell Na+-Li+ exchange and Na+-K+ cotransport in essential hypertension, primary hyperaldosteronism, and hypo-kalaemia, Scand. J. Clin. Lab. Invest. 46(Suppl. 180):82–95.

    Google Scholar 

  • Dumoulin, C. L., and Williams, E. A., 1986, Suppression of uncoupled spins by single-quantum homonuclear polarization transfer, J. Magn. Reson. 66:86–92.

    CAS  Google Scholar 

  • Dwek, R. A., 1973, Nuclear Magnetic Resonance (N.M.R.) in Biochemistry, Applications to Enzyme Systems, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Eakin, R. T., Morgan, L. O., Gregg, C. T., and Matwiyoff, N. A., 1972, Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labelled 13C substrate, FEBS Lett. 28:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., and De Maeyer, L., 1963, Relaxation methods, in: Techniques of Organic Chemistry (S. L. Freiss, E. S. Lewis, and A. Weissberger, eds.), Vol. VIII(II), pp. 895–1054, Wiley, New York.

    Google Scholar 

  • Einstein, A., 1906, A new determination of molecular dimension, Ann. Phys. 19:298–306.

    Google Scholar 

  • Endre, Z. H., and Kuchel, P. W., 1986, Viscosity of concentrated solutions and of human erythro-cyte cytoplasm determined from NMR measurement of molecular correlation times, Biophys. Chem. 24:337–356.

    Article  PubMed  CAS  Google Scholar 

  • Endre, Z. H., Chapman, B. E., and Kuchel, P. W., 1983a, Intra-erythrocyte microviscosity and diffusion of specifically labelled [glycyl-a-13C]glutathione by using 13C NMR, Biochem. J. 216:655–660.

    PubMed  CAS  Google Scholar 

  • Endre, Z. H., Kuchel, P. W., and Chapman, B. E., 1983b, Cell volume dependence of 1H spin-echo NMR signals in human erythrocyte suspensions: The influence of in situ field gradients, Biochim. Biophys. Acta 803:137–144.

    Article  Google Scholar 

  • Endre, Z. H., Allis, J. L., Ratcliffe, P. J., and Radda, G. K., 1989, 87-Rubidium NMR: A novel method of measuring cation flux in intact kidney, Kidney Int. 35:1249–1256.

    Article  PubMed  CAS  Google Scholar 

  • Engler, R. E., Johnson, E. R., and Wade, C. G., 1988, Dynamic parameters from nonselectively generated 1D exchange spectra, J. Magn. Reson. 77:377–381.

    Google Scholar 

  • Espanol, M. C., and Mota De Freitas, D., 1987, 7Li NMR studies of lithium transport in human erythrocytes, Inorg. Chem. 26:4356–4359.

    Article  CAS  Google Scholar 

  • Espanol, M. C., Ramasamy, R., and Mota De Freitas, D., 1989, Measurement of lithium transport across human erythrocyte membranes by 7Li NMR spectroscopy, in: Biological and Synthetic Membranes (D. A. Butterfield, ed.), pp. 33–43, Liss, New York.

    Google Scholar 

  • Fabry, M. E., and Eisenstadt, M., 1975, Water exchange between red cells and plasma. Measurement by nuclear magnetic relaxation, Biophys. J. 15:1101–1110.

    Article  PubMed  CAS  Google Scholar 

  • Fabry, M. E., and San George, R. C., 1983, Effects of magnetic susceptibility on NMR signals arising from red cells: A warning, Biochemistry 22:4119–4125.

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J., Pace, R. J., and Chan, S. I., 1984a, Chloride binding to the anion binding site of band 3. A 35C1 NMR study, J. Biol. Chem. 259:6472–6480.

    PubMed  CAS  Google Scholar 

  • Falke, J. J., Pace, R. J., and Chan, S. I., 1984b, Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors. A 35C1 NMR study, J. Biol. Chem. 259:6481–6491.

    PubMed  CAS  Google Scholar 

  • Fernandez, E., Grandjean, J., and Laszlo, P., 1987, Ion transport by lasalocid A across red-blood-cell membranes, Eur. J. Biochem. 167:353–359.

    Article  PubMed  CAS  Google Scholar 

  • Ferrige, A. G., Lindon, J. C., and Paterson, R. A., 1979. High resolution proton nuclear magnetic resonance studies of interaction between deoxyhaemoglobin and small molecules; dithionite and diphosphoglycerate, J. Chem. Soc. Faraday Trans. 75:2851–2864.

    Article  CAS  Google Scholar 

  • Ford, W. T., Periyasamy, M., Spivey, H. O., and Chandler, J. P., 1985, Magnetization-transfer NMR determination of rates of exchange of solvent in and out of gel polymer beads, J. Magn. Reson. 63:298–305.

    CAS  Google Scholar 

  • Forsén, S., and Hoffman, R. A., 1963, A new method for the study of moderately rapid chemical exchange rates employing nuclear magnetic double resonance, Acta Chem. Scand. 17:1787–1788.

    Article  Google Scholar 

  • Forsén, S., and Hoffman, R. A., 1964a, Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance, J. Chem. Phys. 39:2892–2901.

    Article  Google Scholar 

  • Forsén, S., and Hoffman, R. A., 1964b, Exchange rates by nuclear magnetic multiple resonance. III. Exchange reactions in systems with several nonequivalent sites, J. Chem. Phys. 40:1189–1196.

    Article  Google Scholar 

  • Forsén, S., and Lindman, B., 1981, Ion binding in biological systems, Methods Biochem. Anal. 27:289–486.

    Article  PubMed  Google Scholar 

  • Fourier, J.B.J., 1822, Theorie Analytique de la Chaleur, Paris.

    Google Scholar 

  • Freeman, R., Mareci, R. H., and Morris, G. A., 1981, Weak satellite signals in high-resolution NMR spectra: Separating the wheat from the chaff, J. Magn. Reson. 42:341–345.

    CAS  Google Scholar 

  • Frei, K., and Bernstein, J., 1962, Method for determining magnetic susceptibilities by NMR, J. Chem. Phys. 37:1891–1892.

    Article  CAS  Google Scholar 

  • Frey, S., Kärger, J., Pfeifer, H., and Walther, P., 1988, NMR self-diffusion measurements in regions confined by “absorbing” walls, J. Magn. Reson. 79:336–342.

    CAS  Google Scholar 

  • Fritz, O. G., and Swift, T. J., 1967, The state of water in polarised and depolarised frog nerves: A proton magnetic resonance study, Biophys. J. 7:675–687.

    Article  PubMed  CAS  Google Scholar 

  • Gadian, D. G., 1982, Nuclear Magnetic Resonance and its Applications to Living Systems, Oxford University Press, London.

    Google Scholar 

  • Gadian, D. G., and Radda, G. K., 1981, NMR studies of tissue metabolism, Annu. Rev. Biochem. 50:69–83.

    Article  PubMed  CAS  Google Scholar 

  • Gary-Bobo, C., and Solomon, A. K., 1968, Properties of hemoglobin solutions in red cells, J. Gen. Physiol. 52:825–853.

    Article  PubMed  CAS  Google Scholar 

  • Geen, H., and Freeman, R., 1989, Band-selective excitation for multidimensional NMR spectroscopy, J. Magn. Reson. 87:415–421.

    Google Scholar 

  • Geen, H., Wimperis, S., and Freeman, R., 1989, Band-selective pulses without phase distortion. A simulated annealing approach. J. Magn. Reson. 85:620–627.

    Google Scholar 

  • Gesmar, H., and Led, J. J., 1986, Optimizing the multisite magnetization-transfer experiment, J. Magn. Reson. 68:95–101.

    CAS  Google Scholar 

  • Gibbs, S. J., and Johnson C. S., 1991, A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents, J. Magn. Reson. 93:395–402.

    Google Scholar 

  • Glasel, J. A., and Lee, K. H., 1973, On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems, J. Am. Chem. Soc. 96:970–974.

    Article  Google Scholar 

  • Glickson, J. D., Dadok, J., and Marshall, G. R., 1974, Proton magnetic double resonance study of angiotensin II (Asn1 Val5) in aqueous solution employing correlation spectroscopy. Assignment of peptide NH resonances and transfer of saturation from water, Biochemistry 13:11–14.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean, J., and Laszlo, P., 1987, Cation transport across membranes: The NMR viewpoint, Biochem. (Life Sci. Adv.) 6:1–7.

    Google Scholar 

  • Grimes, A. J., 1980, Human Red Cell Metabolism, Blackwell Scientific, Oxford.

    Google Scholar 

  • Günther, H., 1980, NMR Spectroscopy: An Introduction, Wiley, New York.

    Google Scholar 

  • Gupta, R. K., and Gupta, P., 1982, Direct observation of resolved resonances from intra-and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium (III) tripolyphosphate as paramagnetic shift reagent, J. Magn. Reson. 47:344–350.

    CAS  Google Scholar 

  • Gupta, R. K., and Redfield, A., 1970, Double nuclear magnetic resonance observation of electron exchange between ferri and ferrochrome c, Science 169:1204–1206.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R. K., Ferretti, J. A., and Becker, E. D., 1974, Rapid scan Fourier transform NMR spectroscopy, J. Magn. Reson. 13:275–290.

    CAS  Google Scholar 

  • Gupta, R. K., Benovic, J. L., and Rose, Z. B., 1978a, The determination of the free magnesium level in the human red blood cell by 31P NMR, J. Biol. Chem. 253:6172–6176.

    PubMed  CAS  Google Scholar 

  • Gupta, R. K., Benovic, J. L., and Rose, Z. B., 1978b, Magnetic resonance studies of the binding of ATP and cations to human haemoglobin, J. Biol. Chem. 253:6165–6171.

    PubMed  CAS  Google Scholar 

  • Gupta, R. K., Gupta, P., and Moore, R. D., 1984, NMR studies of intracellular metal ions in intact cells and tissues, Annu. Rev. Biophys. Bioeng. 13:221–246.

    Article  PubMed  CAS  Google Scholar 

  • Gutowsky, H. S., 1975, Time dependent magnetic perturbations, in: Dynamic Nuclear Magnetic Resonance Spectroscopy (L. M. Jackman and F. A. Cotton, eds.), pp. 1–21, Academic Press, New York.

    Google Scholar 

  • Gutowsky, H. S., and Holm, C. H., 1956, Rate processes and nuclear magnetic resonance spectra. II. Hindered internal rotations of amides, J. Chem. Phys. 25:1228–1234.

    Article  CAS  Google Scholar 

  • Gutowsky, H. S., and Saika, A., 1953, Dissociation, chemical exchange, and the proton magnetic resonance in some aqueous electrolytes, J. Chem. Phys. 21:1688–1694.

    Article  CAS  Google Scholar 

  • Hahn, E. L., 1950, Spin echoes, Phys. Rev. 80:580–594.

    Article  Google Scholar 

  • Halliday, J. D., Richards, R. E., and Sharp, R. R., 1969, Chemical shifts in nuclear resonances of caesium ions in solution, Proc. R. Soc. London Ser. A 313:45–69.

    Article  CAS  Google Scholar 

  • Hamasaki, N., Wyriwicz, A. M., Lubansky, H. J., and Omachi, A. A., 1981, A 31P NMR study of phosphoenolpyruvate transport across the human erythrocyte membrane, Biochem. Biophys. Res. Commun. 100:879–887.

    Article  PubMed  CAS  Google Scholar 

  • Han, K. H., La Mar, G. N., and Nagai, K., 1989, Proton magnetic resonance study of the influence of chemical modification, mutation, quaternary state, and ligation state on the dynamic stability of the heme pocket in hemoglobin as reflected in the exchange of the proximal histidyl ring labile proton, Biochemistry 28:2169–2178.

    Article  PubMed  CAS  Google Scholar 

  • Harris, R., and Mann, B. E., 1978, NMR and the Periodic Table, Academic Press, New York.

    Google Scholar 

  • Hele-Shaw, H. S., and Hay, A., 1901, XI. Lines of induction in a magnetic field, Philos. Trans. R. Soc. London Ser. A. 195:303–327.

    Google Scholar 

  • Helpern, J. A., Knight, R., Welch, K.M.A., and Smith, M. B., 1987, 87Rb uptake in human erythrocytes: A potassium analogue for cation transport, Abstracts of the Sixth Annual Meeting of Soc. Magn. Reson. Med., p. 513.

    Google Scholar 

  • Helpern, J. A., Welch, K.M.A., and Halvorson, H. R., 1989, Rubidium transport in human erythrocyte suspensions monitored by 87Rb NMR with aqueous chemical shift reagents, NMR Biomed. 2:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Hennig, J., and Limbach, H. H., 1982, Magnetization transfer in the rotating frame: A new simple kinetic tool for the determination of rate constants in the slow chemical exchange range, J. Magn. Reson. 49:322–328.

    CAS  Google Scholar 

  • Herbst, M. D., and Goldstein, J. H., 1984, Monitoring red cell aggregation with nuclear magnetic resonance, Biochim. Biophys. Acta 805:123–126.

    Article  PubMed  CAS  Google Scholar 

  • Hervé, M., Cybulska, B., and Gary-Bobo, C., 1985, Cation permeability induced by valinomycin, gramicidin D and amphotericin B in large lipidic unilamellar vesicles studied by 31P-NMR, Eur. Biophys. J. 12:121–128.

    Article  Google Scholar 

  • Hoffman, D. W., and Henkens, R. W., 1987, The rates of fast reactions of carbon dioxide and bicarbonate in human erythrocytes measured by carbon-13 NMR, Biochem. Biophys. Res. Commun. 143:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Homans, S. W., 1989, A Dictionary of Concepts in NMR, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Hubbard, P. S., 1970, Non-exponential nuclear magnetic relaxation by quadrupole interactions, J. Chem. Phys. 53:985–987.

    Article  CAS  Google Scholar 

  • Hughes, M. S., Flavell, K. J., and Birch, N. J., 1988a, Transport of lithium into human erythrocytes as studied by 7Li nuclear magnetic resonance and atomic absorption spectroscopy, Biochem. Soc. Trans. 16:827–828.

    CAS  Google Scholar 

  • Hughes, M. S., Thomas, G.M.H., Partridge, S., and Birch, N. J., 1988b, An investigation into the use of a dysprosium shift reagent in the nuclear magnetic resonance spectroscopy of biological systems, Biochem. Soc. Trans. 16:207–208.

    CAS  Google Scholar 

  • Hunt, G.R.A., 1975, Kinetics of ionophore-mediated transport of Pr3+ ions through phospholipid membranes using lH NMR spectroscopy, FEBS Lett. 58:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, G.R.A., and Jones, I. C., 1982, Lanthanide-ion transport across phospholipid vesicular membranes: A comparison of alamethicin 30 and A23187 using 1H-NMR spectroscopy, Biosci. Rep. 2:921–928.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, G.R.A., and Jones, I. C., 1983, A 1H-NMR investigation of the effects of ethanol and general anesthetics on ion channels and membrane fusion using unilamellar phospholipid membranes, Biochim. Biophys. Acta 736:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, G.R.A., Jones, I. C., and Veiro, J. A., 1984, Phosphatidic acid regulates the activity of the channel-forming ionophores alamethicin, melittin, and nystatin: A 1H-NMR study using phospholipid membranes, Biosci. Rep. 4:403–413.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, F. R., 1970, Facilitated diffusion in human erythrocytes, Biochim. Biophys. Acta 211:216–222.

    Article  CAS  Google Scholar 

  • Ikehara, T., Yamaguchi, H., Hosokawa, K., Sakai, T., and Miyamoto, H., 1984, Rb+ influx in response to changes in energy generation: Effect of the regulations of the ATP content of HeLa cells, J. Cell. Physiol. 119:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Iles, R., 1981, Measurement of intracellular pH, Biosci. Rep. 1:687–699.

    Article  PubMed  CAS  Google Scholar 

  • Itada, N., and Forster, R. E., 1977, Carbonic anhydrase activity in intact red blood cells measured with 18O exchange, J. Biol. Chem. 252:3881–3890.

    PubMed  CAS  Google Scholar 

  • Jeener, J., Meier, G. H., Bachmann, P., and Ernst, R. R., 1979, Investigation of exchange processes by two-dimensional NMR spectroscopy, J. Chem. Phys. 71:4546–4553.

    Article  CAS  Google Scholar 

  • Jelicks, L. A., and Gupta, R. K., 1989a, Double quantum NMR of sodium ions in cells and tissues. Paramagnetic quenching of extracellular coherence, J. Magn. Reson. 81:586–592.

    CAS  Google Scholar 

  • Jelicks, L. A., and Gupta, R. K., 1989b, Observation of intracellular sodium ions by double-quantum-filtered 23Na NMR with paramagnetic quenching of extracellular coherence by gadolinium tripolyphosphate, J. Magn. Reson. 83:146–151.

    CAS  Google Scholar 

  • Jesson, J. P., Meakin, P., and Kniessel, J., 1973, Homonuclear decoupling and peak elimination in Fourier transform nuclear magnetic resonance, J. Am. Chem. Soc. 95:618–620.

    Article  CAS  Google Scholar 

  • Jones, A. J., and Kuchel, P. W., 1980, Measurement of choline concentration and transport in human erythrocytes by 1H NMR: Comparison of normal blood and that from lithium-treated psychiatric patients, Clin. Chim. Acta 104:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, J. I., and Fraenkel, G., 1980, NMR of Chemically Exchanging Systems, Academic Press, New York.

    Google Scholar 

  • Kärger, J., 1971, Der einfluss der zweibereichdiffusion auf die spinechodampfung unter berucksichtigung der relaxation bei messungen mit der methode der gepulsten feldgradienten, Ann. Phys. 27:107–109.

    Article  Google Scholar 

  • Kärger, J., 1985, NMR self-diffusion studies in heterogeneous systems, Adv. Colloid Interface Sci. 23:129–148.

    Article  Google Scholar 

  • Kärger, J., Pfeifer, H., and Heink, W., 1988, Principles and applications of self-diffusion measurements by nuclear magnetic resonance, Adv. Magn. Reson. 12:1–89.

    Google Scholar 

  • Kendall, M., and Stuart, A., 1977, The Advanced Theory of Statistics, Vol. 1, Chapter 10, Charles Griffin, London.

    Google Scholar 

  • King, G. F., and Boyd, C.A.R., 1991, Proton NMR studies of transmembrane solute transport, in: Cell Membrane Transport: Experimental Approaches and Methodologies (D. L. Yudilevich, R. Devés, S. Perán, and Z. I. Cabantchik, eds.), pp. 297–323, Plenum Press, New York.

    Google Scholar 

  • King, G. F., and Kuchel, P. W., 1984, A proton NMR study of iminodipeptide transport and hydrolysis in the human erythrocytes, Biochem. J. 220:553–560.

    PubMed  CAS  Google Scholar 

  • King, G. F., and Kuchel, P. W., 1985, Assimilation of a-glutamyl-peptides by human erythrocytes, Biochem. J. 227:833–842.

    PubMed  CAS  Google Scholar 

  • King, G. F., York, M. J., Chapman, B. E., and Kuchel, P. W., 1983, Proton NMR spectroscopic studies of dipeptidase in human erythrocytes, Biochem. Biophys. Res. Commun. 110:305–312.

    Article  PubMed  CAS  Google Scholar 

  • King, G. F., Middlehurst, C. R., and Kuchel, P. W., 1986, Direct NMR evidence that prolidase is specific for the trans isomer of imidodipeptide substrates, Biochemistry 25:1054–1062.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, K., 1990, NMR methods for measuring membrane transport rates, NMR Biomed. 3:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, K., and Kuchel, P. W., 1985, Red cell volume changes monitored using a new NMR procedure, J. Magn. Reson. 62:568–572.

    CAS  Google Scholar 

  • Kirk, K., and Kuchel, P. W., 1986a, Equilibrium exchange of dimethyl methylphosphonate across the human red cell membrane measured using NMR spin transfer, J. Magn. Reson. 68:311–318.

    CAS  Google Scholar 

  • Kirk, K., and Kuchel, P. W., 1986b, Red cell volume changes monitored using 31P NMR: A method and model, Stud. Biophys. 116:139–140.

    Google Scholar 

  • Kirk, K., and Kuchel, P. W., 1988a, The contribution of magnetic susceptibility effects to trans-membrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions, J. Biol. Chem. 263:130–134.

    PubMed  CAS  Google Scholar 

  • Kirk, K., and Kuchel, P. W., 1998b, Physical basis of the effect of haemoglobin on the 31P NMR chemical shifts of some phosphoryl compounds, Biochemistry 27:8803–8810.

    Article  Google Scholar 

  • Kirk, K., and Kuchel, P. W., 1988c, Characterisation of the transmembrane chemical shift differences in the 31P NMR spectra of some phosphoryl compounds in erythrocyte suspensions, Biochemistry 27:8795–8802.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, K., Kuchel, P. W., and Labotka, R. J., 1988, Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions, Biophys. J. 54:241–247.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, S., Kanashiro, M., Hatashi, F., Yoshida, K., Abe, H., Imanishi, M., Kawamura, M., Kawano, Y., Ashida, T., Kimura, M., Kuramochi, M., Ito, K., and Omae, T., 1989, Clinical application of sodium-23 nuclear magnetic resonance for measurement of red cell sodium concentrations, Scand. J. Clin. Lab. Invest. 49:489–495.

    Article  PubMed  CAS  Google Scholar 

  • Kuchel, P. W., 1981, NMR of biological samples, CRC Crit. Rev. Anal. Chem. 12:155–231.

    Article  CAS  Google Scholar 

  • Kuchel, P. W., 1987, Steady-state parameters of an enzyme from n.m.r. spin transfer with thermal variation, Biochem. J. 244:247–248.

    PubMed  CAS  Google Scholar 

  • Kuchel, P. W., 1989, Biological applications of NMR, in: Analytical NMR (L. D. Field and S. Sternell, eds.), chapter 6, Wiley, New York.

    Google Scholar 

  • Kuchel, P. W., 1990, Spin-exchange NMR spectroscopy in studies of the kinetics of enzymes and membrane transport, NMR Biomed. 3:102–119.

    Article  PubMed  CAS  Google Scholar 

  • Kuchel, P. W., and Bulliman, B. T., 1989, Perturbation of homogeneous magnetic fields by isolated single and confocal spheroids. Implicaitons for NMR spectroscopy of cells, NMR Biomed. 2:151–160.

    Article  PubMed  CAS  Google Scholar 

  • Kuchel, P. W., and Chapman, B. E., 1983, NMR spin exchange kinetics at equilibrium in membrane transport and enzyme systems, J. Theor. Biol. 105:569–589.

    Article  PubMed  CAS  Google Scholar 

  • Kuchel, P. W., and Chapman, B. E., 1993, Heteronuclear double-quantum coherence selection with magnetic gradients in diffusion experiments, J. Magn. Reson. 101:53–59.

    Article  CAS  Google Scholar 

  • Kuchel, P. W., Chapman, B. E., Endre, Z. H., King, G. F., Thorburn, D. R., and York, M. J., 1984, Monitoring metabolic reactions in erythrocytes using NMR spectroscopy, Biomed. Biochim. Acta 43:719–726.

    PubMed  CAS  Google Scholar 

  • Kuchel, P. W., King, G. F., and Chapman, B. E., 1987a, No evidence of high capacity a-glutamyl-dipeptide transport into human erythrocytes, Biochem. J. 242:311–312.

    PubMed  CAS  Google Scholar 

  • Kuchel, P. W., Chapman, B. E., and Potts, J. R., 1987b, Glucose transport in human erythrocytes measured using 13C NMR spin transfer, FEBS Lett. 219:5–10.

    Article  PubMed  CAS  Google Scholar 

  • Kuchel, P. W., Bulliman, B. T., Chapman, B. E., and Kirk, K., 1987c, The use of transmembrane differences in saturation transfer for measuring fast membrane transport: H13CO3 - exchange across the human erythrocyte, J. Magn. Re son. 74:1–11.

    CAS  Google Scholar 

  • Kuchel, P. W., Bulliman, B. T., Chapman, B. E., Kirk, K., and Potts, J. R., 1987d, Fast trans-membrane exchange in red cells studied with NMR, Biomed. Biochim. Acta 46:S55–S59.

    PubMed  CAS  Google Scholar 

  • Kuchel, P. W., Bulliman, B. T., and Chapman, B. E., 1988a, Mutarotase equilibrium exchange kinetics studied by 13C NMR, Biophys. Chem. 32:89–95.

    Article  PubMed  CAS  Google Scholar 

  • Kuchel, P. W., Bulliman, B. T., Chapman, B. E., and Mendz, G. L., 1988b, Variances of rate constants estimated from 2D NMR exchange spectra. J. Magn. Reson. 76:136–142.

    Google Scholar 

  • Kuchel, P. W., Chapman, B. E., and Xu, A. S.-L., 1992, Raes of anion transfer across erythrocyte membranes measured with NMR spectroscopy, in: The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescent Antigens (E. Bamberg and H. Passow, eds.), pp. 105–119, Elsevier, Amsterdam.

    Google Scholar 

  • Kuhn, W., Offermann, W., and Leibfritz, D., 1986, Influence of off-resonance irradiation upon T1 in in vivo saturation transfer, J. Magn. Reson. 68:193–197.

    CAS  Google Scholar 

  • Labotka, R. J., 1984, Measurement of intracellular pH and deoxyhemoglobin concentration in deoxygenated erythrocytes by phosphorus-31 nuclear magnetic resonance, Biochemistry 23:5549–5555.

    Article  PubMed  CAS  Google Scholar 

  • Labotka, R. J., and Kieps, R. A., 1983, A phosphate-analogue probe of red cell pH using phosphorus-31 NMR, Biochemistry 22:6089–6095.

    Article  PubMed  CAS  Google Scholar 

  • Labotka, R. J., and Omachi, A., 1987a, Erythrocyte anion transport of phosphate analogues, J. Biol. Chem. 262:305–311.

    PubMed  CAS  Google Scholar 

  • Labotka, R. J., and Omachi, A., 1987b, The pH dependence of red cell membrane transport of titratable anions. An NMR study, Biomed. Biochim. Acta 46:S60–S64.

    PubMed  CAS  Google Scholar 

  • Labotka, R. J., and Schwab, C. M., 1990, A dialysis cell for nuclear magnetic resonance spectroscopic measurement of protein-small molecule binding, Anal. Biochem. 191:376–383.

    Article  PubMed  CAS  Google Scholar 

  • Led, J. J., and Gesmar, H., 1982, The applicability of the magnetization-transfer NMR technique to determine chemical exchange rates in extreme cases. The importance of complementary experiments, J. Magn. Reson. 49:4444–4463.

    Google Scholar 

  • London, R. E., and Gabel, S. A., 1989, Determination of membrane potential and cell volume by 19F NMR using trifluoroacetate and trifluoroacetamide probes, Biochemistry 28:2378–2382.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, U. P., Harmsen, E., Ho, C., and Vogel, H., 1990, Nuclear magnetic resonance studies of cellular metabolism, Anal. Biochem. 191:193–222.

    Article  PubMed  CAS  Google Scholar 

  • Lunderg, U. P., Berners-Price, S. J., Roy, S., and Kuchel, P. W., 1992, NMR studies of erythrocytes immobilized in agarose and alginate gels, Magn. Reson. Med. 25:273–288.

    Article  Google Scholar 

  • McCain, D. C., and Markley, J. L., 1985, Water permeability of chloroplast envelope membranes: In vivo measurement by saturation transfer, FEBS Lett. 183:353–358.

    Article  PubMed  CAS  Google Scholar 

  • McCall, D. W., Douglass, D. C., and Anderson, E. W., 1963, Self-diffusion studies by means of nuclear magnetic resonance spin-echo techniques, Ber. Bunsenges. Phys. Chem. 67:340–366.

    Google Scholar 

  • McConnell, H. M., 1958, Reaction rates by nuclear magnetic resonance, J. Chem. Phys. 28:430–431.

    Article  CAS  Google Scholar 

  • McConnell, H. M., and Thompson, D. D., 1957, Molecular transfer of nonequilibrium nuclear spin magnetization, J. Chem. Phys. 26:958–959.

    Article  CAS  Google Scholar 

  • Macey, R. I., 1984, Transport of water and urea in red blood cells, Am. J. Physiol. 246:C195–C203.

    PubMed  CAS  Google Scholar 

  • Macey, R. I., and Farmer, R.E.L., 1970, Inhibition of water and solute permeability in human red cells, Biochim. Biophys. Acta 211:104–106.

    Article  PubMed  CAS  Google Scholar 

  • Macey, R. I., and Yousef, L. W., 1988, Osmotic stability of red cells in renal circulation requires rapid urea transport, Am. J. Physiol. 254:C669–C674.

    PubMed  CAS  Google Scholar 

  • Maciel, G. E., and Natterstad, J. J., 1965, Carbon-13 chemical shifts of the carbonyl group. III. Solvent effects, J. Chem. Phys. 42:2752–2759.

    Article  Google Scholar 

  • Maciel, G. E., and Ruben, G. C., 1963, Solvent effects on the 13C chemical shift of the carbonyl group of acetone, J. Am. Chem. Soc. 85:3903–3904.

    Article  CAS  Google Scholar 

  • Macura, S., and Ernst, R. R., 1980, Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy, Mol. Phys. 41:95–117.

    Article  CAS  Google Scholar 

  • Macura, S., Huang, Y., Suter, D., and Ernst, R. R., 1981, Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins, J. Magn. Reson. 43:259–281.

    CAS  Google Scholar 

  • Mandelbrot, B. B., 1977, Fractals: Form, Chance, and Dimension, Freeman, San Francisco.

    Google Scholar 

  • Marshall, W. E., Costello, A.J.R., Henderson, T. O., and Omachi, A., 1977, Organic phosphate binding to haemoglobin in intact erythrocytes determined by 31P nuclear magnetic resonance spectroscopy, Biochim. Biophys. Acta 490:290–300.

    Article  PubMed  CAS  Google Scholar 

  • Mathur-De Vre, R., 1979, The NMR studies of water in biological systems, Prog. Biophys. Mol. Biol. 35:103–134.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, J. C., 1954, A Treatise on Electricity and Magnetism, 3rd ed., Vol. 2, Dover, New York.

    Google Scholar 

  • Mayrand, R. R., and Levitt, D. G., 1983, Urea and ethylene glycol-facilitated transport in intact erythrocytes, FEBS Lett. 241:188–190.

    Google Scholar 

  • Mendz, G. L., Robinson, G., and Kuchel, P. W., 1986, Direct quantitative analysis of enzyme-catalyzed reactions by two-dimensional nuclear magnetic resonance spectroscopy: Adenylate kinase and phosphoglyceratemutase, J. Am. Chem. Soc. 108:169–173.

    Article  CAS  Google Scholar 

  • Mendz, G. L., Bulliman, B. T., James, N. L., and Kuchel, P. W., 1989, Magnetic potential and field gradients of model cells, J. Theor. Biol. 137:55–69.

    Article  PubMed  CAS  Google Scholar 

  • Merck Index, 1989, 11th ed., p. 1523, Merck and Co., Rathway, NJ.

    Google Scholar 

  • Messerle, B. A., Wider, G., Otting, G., Weber, C., and Süthrich, K., 1989, Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solution, J.Magn. Reson. 85:608–613.

    CAS  Google Scholar 

  • Mills, R., 1973, Self-diffusion in normal and heavy water in the range 1-45°, J. Phys. Chem. 77:685–688.

    Article  CAS  Google Scholar 

  • Moon, R. B., and Richards, J. H., 1973, Determination of intracellular pH by 31P magnetic resonance, J. Biol. Chem. 248:7276–7278.

    PubMed  CAS  Google Scholar 

  • Moore, W. J., 1981, Physical Chemistry, 5th ed., Longman, Harlow, Essex.

    Google Scholar 

  • Morales, M. F., Horovitz, M., and Botts, J., 1962, The distribution of tracer substrate in an enzyme-substrate system at equilibrium. Arch. Biochem. Biophys. 99:258–264.

    Article  CAS  Google Scholar 

  • Morariu, V. V., and Benga, G., 1977, Evaluation of a nuclear magnetic resonance technique for the study of water exchange through erythrocyte membranes in normal and pathological subjects, Biochim. Biophys. Acta 469:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Morris, G. A., and Freeman, R., 1978, Selective excitation in Fourier transform nuclear magnetic resonance, J. Magn. Reson. 29:433–462.

    CAS  Google Scholar 

  • Murday, J. S., and Cotts, R. M., 1968, Self-diffusion coefficient of liquid lithium, J. Chem. Phys. 48:4938–4945.

    Article  CAS  Google Scholar 

  • Naccache, P., and Sha’afi, R. I., 1974, Effect of pCMBS on water transfer across biological membranes, J. Cell. Physiol. 83, 449–456.

    Article  PubMed  CAS  Google Scholar 

  • Nakada, T., Kwee, I. L., Griffey, B. V., and Griffey, R. H., 1988, F-19 MR imaging of glucose metabolism in the rabbit, Radiology 168:823–826.

    PubMed  CAS  Google Scholar 

  • Neuman, C. H., 1974, Spin echo of spins diffusing in a bounded medium, J. Chem. Phys. 11:4508–4511.

    Article  Google Scholar 

  • Oderblad, E., Bhar, B. N., and Lindström, G., 1956, Proton magnetic resonance of human red blood cells in heavy-water exchange experiments, Arch. Biochem. Biophys. 63:221–225.

    Article  Google Scholar 

  • Odoom, J. E., Campbell, I. D., Ellory, J. C., and King, G. F., 1990, Characterization of peptide fluxes into human erythrocytes: A proton-n.m.r. study, Biochem. J. 267:141–147.

    PubMed  CAS  Google Scholar 

  • Ogino, T., Arata, Y., Fujiwara, S., Shaun, H., and Beppu, T., 1978, Use of proton correlation NMR spectroscopy in the study of living cells. Anaerobic metabolism of Escherichia coli, J. Magn. Reson. 31:523–526.

    CAS  Google Scholar 

  • Ogino, T., Den Hollander, J. A., and Shulman, R. G., 1983, 39K, 23Na and 31P NMR studies of ion transport in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80:5185–5189.

    Article  PubMed  CAS  Google Scholar 

  • Ogino, T., Shulman, G. I., Avison, M. J., Gullans, S. R., Den Hollander, J. A., and Shulman, R. G., 1985, 23Na and 39K NMR studies of ion transport in human erythrocytes, Proc. Natl. Acad. Sci. USA 82:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  • Ohgushi, M., Nagayama, K., and Wada, A., 1978, Dextran-magnetite: A new relaxation reagent and its application to T2 measurements in gel systems, J. Magn. Reson. 29:599–601.

    CAS  Google Scholar 

  • Okerlund, L. S., and Gillies, R. J., 1988, Measurement of pH and Na+ by nuclear magnetic resonance, in: Na +/H + Exchange (S. Grinstein, ed.), pp. 21–43, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Oki, M., 1985, Applications of Dynamic NMR Spectroscopy to Organic Chemistry, pp. 1–37, VCH Publishers, New York.

    Google Scholar 

  • Partridge, S., Hughes, M. S., Thomas, G.M.H., and Birch, N. J., 1988, Lithium transport in erythrocytes, Biochem. Soc. Trans. 16:205–206.

    CAS  Google Scholar 

  • Pekar, J., and Leigh, J. S., 1986, Detection of biexponential relaxation in sodium-23 facilitated by double-quantum filtering, J. Magn. Reson. 69:582–584.

    CAS  Google Scholar 

  • Pekar, J., Renshaw, P. F., and Leigh, J. S., 1987, Selective detection of intracellular sodium by coherence-transfer NMR, J. Magn. Reson. 72:159–161.

    CAS  Google Scholar 

  • Perrin, C. L., 1989, Optimum mixing time for chemical kinetics by 2D NMR, J. Magn. Reson. 82:619–621.

    CAS  Google Scholar 

  • Perrin, C. L., and Engler, R. E., 1990, Weighted linear-least-squares analysis of EXSY data from multiple 1D selective inversion experiments, J. Magn. Reson. 90:363–369.

    CAS  Google Scholar 

  • Perrin, C. L., and Gipe, R. K., 1984, Multisite kinetics by quantitative two-dimensional NMR, J. Am. Chem. Soc. 106:4036–4038.

    Article  CAS  Google Scholar 

  • Pettegrew, J. W., Woessner, D. E., Minshew, N. J., and Glonek, T., 1984, Sodium-23 analysis of human whole blood, erythrocytes and plasma. Chemical shift, spin relaxation and intracellular sodium concentration studies, J. Magn. Reson. 57:185–196.

    CAS  Google Scholar 

  • Pettegrew, J. W., Post, J.F.M., Panchalingam, K., Withers, G., and Woessner, D. E., 1987, 7Li NMR study of normal human erythrocytes, J. Magn. Reson. 1:504–519.

    Google Scholar 

  • Pike, M. M., Simon, S. R., Balschi, J. A., and Springer, C. S., 1982, High-resolution NMR studies of transmembrane cation transport: Use of an aqueous shift reagent for 23Na, Proc. Natl. Acad. Sci. USA 79:810–814.

    Article  PubMed  CAS  Google Scholar 

  • Pirkle, J. L., Ashley, D. L., and Goldstein, J. H., 1979, Pulse nuclear magnetic resonance measurements of water exchange across the erythrocyte membrane employing a low Mn2+ concentration, Biophys. J. 25:389–406.

    Article  PubMed  CAS  Google Scholar 

  • Plateau, P., Dumas, C., and Gueron, M., 1983, Solvent-peak-suppressed NMR: Correction of baseline distortions and use of strong-pulse excitation, J. Magn. Reson. 54:46–53.

    CAS  Google Scholar 

  • Potts, J. R., and Kuchel, P. W., 1992, Anomeric preference of fluoro-glucose exchange across human red cell membranes: 19F-n.m.r. studies, Biochem. J. 281:753–759.

    PubMed  CAS  Google Scholar 

  • Potts, J. R., Kirk, K., and Kuchel, P. W., 1989, Characterisation of the transport of the non-electrolyte dimethyl methylphosphonate across the red cell membrane, NMR Biomed. 1:198–204.

    Article  PubMed  CAS  Google Scholar 

  • Potts, J. R., Hounslow, A. M., and Kuchel, P. W., 1990, Exchange of fluorinated glucose across the red cell membrane measured using 19F NMR magnetisation transfer, Biochem. J. 266:925–928.

    PubMed  CAS  Google Scholar 

  • Potts, J. R., Bulliman, B. T., and Kuchel, P. W., 1992, Urea exchange across the human erythrocyte membrane measured using 13C NMR lineshape analysis, Eur. Biophys. J. 21:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K.V.S., Severini, A., and Kaplan, J. G., 1987, Sodium ion influx in proliferating lymphocytes: An early component of the mitogenic signal, Arch. Biochem. Biophys. 252:515–525.

    Article  PubMed  CAS  Google Scholar 

  • Prestegard, J. A., Cramer, J. A., and Viscio, D. B., 1979, Nuclear magnetic resonance determination of permeation coefficients for maleic acid in phospholipid vesicles, Biophys. J. 26:575–584.

    Article  PubMed  CAS  Google Scholar 

  • Price, W. S., and Kuchel, P. W., 1990, Restricted diffusion of bicarbonate and hypophosphite ions modulated by transport in suspensions of red blood cells, J. Magn. Reson. 90:100–110.

    CAS  Google Scholar 

  • Price, W. S., Chapman, B. E., Cornell, B. A., and Kuchel, P. W., 1989, Translational diffusion of glycine in erythrocytes measured at high resolution with pulsed field gradients, J. Magn. Reson. 83:160–166.

    CAS  Google Scholar 

  • Price, W. S., Kuchel, P. W., and Cornell, B. A., 1991, A 35C1 and 37C1 NMR study of chloride binding to the erythrocyte anion transport protein, Biophys. Chem. 40:329–337.

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein, D. L., and Isab, A. A., 1982, Determination of the intracellular pH of intact erythrocytes by lH NMR spectroscopy, Anal. Biochem. 121:423–432.

    Article  PubMed  CAS  Google Scholar 

  • Raftos, J. E., Kirk, K., and Kuchel, P. W., 1988, Further investigation of the use of dimethyl-methylphosphonate as a 31P-NMR probe of red cell volume, Biochim. Biophys. Acta 968:160–166.

    Article  PubMed  CAS  Google Scholar 

  • Raftos, J. E., Bulliman, B. T., and Kuchel, P. W., 1990, Evaluation of an electrochemical model of erythrocyte pH buffering using 31P NMR data, J. Gen. Physiol. 95:1183–1204.

    Article  PubMed  CAS  Google Scholar 

  • Redfield, A. G., 1978, Proton nuclear magnetic resonance in aqueous solutions, Methods Enzymol. 49:253–270.

    Article  PubMed  CAS  Google Scholar 

  • Redfield, A. G., 1985, Special problems of NMR in H2O solution, in: NMR in the Life Sciences (E. M. Bradbury and C. Nicolini, eds.), pp. 1–10, Plenum Press, New York.

    Google Scholar 

  • Renshaw, P. F., Blum, H., and Leigh, J. S., 1986, Applications of dextran magnetite as a sodium relaxation enhancer in biological systems, J. Magn. Reson. 69:523–526.

    CAS  Google Scholar 

  • Riddell, F. G., and Arumugam, S., 1988, Surface charge effects upon membrane transport processes: The effect of surface charge on the monensin-mediated transport of lithium ions through phospholipid bilayers studied by 7Li NMR sepctroscopy, Biochim. Biophys. Acta 945:65–72.

    Article  PubMed  CAS  Google Scholar 

  • Riddell, F. G., and Arumugam, S., 1989, The transport of Li+, Na+ and K+ ions through phospholipid bilayers mediated by the antibiotic M139603 studied by 7Li, 23Na and 39K NMR, Biochim. Biophys. Acta 984:6–10.

    Article  CAS  Google Scholar 

  • Riddell, F. G., and Hayer, M. K., 1985, The monensin-mediated transport of sodium ions through phospholipid bilayers studied by 23Na NMR spectroscopy, Biochim. Biophys. Acta 817:313–317.

    Article  PubMed  CAS  Google Scholar 

  • Riddell, F. G., Arumugam, S., and Cox, B. G., 1988a, The monensin-mediated transport of Na+ and K+ through phospholipid bilayers studied by 23Na and 39K NMR, Biochim. Biophys. Acta 944:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Riddell, F. G., Arumugam, S., Brophy, P. J., Cox, B. G., Payne, M.C.H., and Southon, T. E., 1988b, The nigericin-mediated transport of sodium and potassium ions through phospholipid bilayers studied by 23Na and 39K NMR spectroscopy, J. Am. Chem. Soc. 110:734–738.

    Article  CAS  Google Scholar 

  • Robinson, G., Chapman, B. E., and Kuchel, P. W., 1984, 31P NMR spin-transfer in the phospho-glyceromutase reaction, Eur. J. Biochem. 143:643–649.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G., Kuchel, P.W., Chapman, B. E., Doddrell, D. M., and Irving, M. G., 1985, A simple procedure for selective inversion of NMR resonances for spin transfer enzyme kinetic measurements, J. Magn. Reson. 63:314–319.

    CAS  Google Scholar 

  • Rogers, M. T., and Woodbrey, J. C., 1962, A proton magnetic resonance study of hindered internal rotation in some substitued N,N-dimethylamides, J. Phys. Chem. 66:540–546.

    Article  CAS  Google Scholar 

  • Sandström, J., 1982, Dynamic NMR Spectroscopy, Academic Press, New York.

    Google Scholar 

  • Savitz, D., Sidel, V. W., and Solomon, A. K., 1964, Osmotic properties of human red cells, J. Gen. Physiol. 48:78–94.

    Article  Google Scholar 

  • Shami, Y., Carver, J., Ship, S., and Rothstein, A., 1977, Inhibition of Cl- binding to anion transport protein of the red blood cell by DIDS (4,4’-diisothiocyano-2,2’-stilbene disulfonic acid) measured by [35C1] NMR, Biochem. Biophys. Res. Commun. 76:429–436.

    Article  CAS  Google Scholar 

  • Shapiro, Y. E., Viktorov, A. V., Volkova, V. I., Barsukov, L. I., Bystrov, V. F., and Bergelson, L. D., 1975, 13C NMR investigation of phospholipid membranes with the aid of shift reagents, Chem. Phys. Lipids 14:227–232.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, D., 1984, Fourier Transform N.M.R. Spectroscopy, 2nd ed., Elsevier, Amsterdam.

    Google Scholar 

  • Shinar, H., and Navon, G., 1984, NMR relaxation studies of intracellular Na+ in red blood cells, Biophys. Chem. 20:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Shulman, R. G., 1979, Biological Applications of Magnetic Resonance, Academic Press, New York.

    Google Scholar 

  • Shungu, D. C., and Briggs, R. W., 1988, Application of 1D and 2D 23Na magnetization-transfer NMR to the study of ionophore-mediated transmembrane cation transport, J. Magn. Reson. 77:491–503.

    CAS  Google Scholar 

  • Sklenár, V., and Starcuk, Z., 1982, 1-2-1 pulse train: A new effective method of selective excitation for proton NMR in water, J. Magn. Reson. 50:495–501.

    Google Scholar 

  • Slonczewski, J. L., Rosen, B. P., Alger, J. R., and Macnab, R. M., 1981, pH homeostasis in Escherichia coli: Measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate, Proc. Nad. Acad. Sci. USA 78:6271–6275.

    Article  CAS  Google Scholar 

  • Springer, C. S., 1987, Measurement of metal cation compartmentation in tissue by high-resolution metal cation NMR, Annu. Rev. Biophys. Biophys. Chem. 16:375–399.

    Article  PubMed  CAS  Google Scholar 

  • Stein, W. D., 1986, Transport and Diffusion Across Cell Membranes, Academic Press, New York.

    Google Scholar 

  • Stejskal, E. O., and Tanner, J. E., 1965, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, J. Chem. Phys. 42:288–292.

    Article  CAS  Google Scholar 

  • Stewart, I. M., Chapman, B. E., Kirk, K., Kuchel, P. W., Lovric, V. A., and Raftos, J. E., 1986, Intracellular pH in stored erythrocytes. Refinement and further characterisation of the 31P NMR methylphosphonate procedure, Biochim. Biophys. Acta 885:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Stilbs, P., 1987, Fourier transform pulsed-gradient spin-echo studies of molecular diffusion, Prog. NMR Spectrosc. 19:1–45.

    Article  CAS  Google Scholar 

  • Tanford, C., 1966, Physical Chemistry of Macromolecules, Wiley, New York.

    Google Scholar 

  • Taylor, J. S., and Deutsch, C., 1983, Fluorinated a-methylamino acids as 19F NMR indicators of intracellular pH, Biophys. J. 43:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. S., Deutsch, C., McDonald, G. G., and Wilson, D. F., 1981, Measurement of trans-membrane pH gradients in human erythrocytes using 19F NMR, Anal. Biochem. 114:415–418.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G.M.H., Hughes, M. S., Partridge, S., Olufunwa, R. I., Marr, G., and Birch, N. J., 1988, Nuclear magnetic resonance studies of lithium ion transport in isolated rat hepatocytes, Biochem. Soc. Trans. 16:208.

    CAS  Google Scholar 

  • Toon, M. R., and Solomon, A. K., 1991, Transport parameters in the human red cell membrane: Solute-membrane interactions of amides and ureas, Biochim. Biophys. Acta 1063:179–190.

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell, H. J. V., and Harris, K. R., 1984, Diffusion in Liquids: A Theoretical and Experimental Study, Butterworth, London.

    Google Scholar 

  • Ugurbil, K., 1985, Magnetization-transfer measurements of individual rate constants in the presence of multiple reactions, J. Magn. Reson. 64:207–219.

    CAS  Google Scholar 

  • Vandenberg, J. I., King, G. F., and Kuchel, P. W., 1985, The assimilation of tri-and tetrapeptides by human erythrocytes, Biochim. Biophys. Acta 846:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Waldeck, A. R., and Kuchel, P. W., 1993, 23Na-NMR study of ionophore-mediated cation exchange between two populations of liposomes, Biophys. J. 64:1445–1455.

    Article  PubMed  CAS  Google Scholar 

  • Waldeck, A. R., Lennon, A. J., Chapman, B. E., and Kuchel, P. W., 1993, Cation transport and diffusion in liposomes studied by 7Li+ and 23Na+ pulsed field gradient NMR, Faraday Trans., in press.

    Google Scholar 

  • Weith, J. O., Andersen, O. S., Brahm, J., Bjerrum, P. J., and Borders, C. L., Jr., 1982, Chloride-bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites, Philos. Trans. R. Soc. London Ser. B 299:383–399.

    Article  Google Scholar 

  • Williams, R.J.P., 1982, The chemistry of lanthanide ions in solution and in biological systems, Struct Bonding (Berlin) 50:11–79.

    Google Scholar 

  • Wittenkeller, L., Mota de Freitas, D., Geraldes, C.F.G.C., and Tomé, A.J.R., 1992, Physical basis for the resolution of intra-and extracellular 133Cs NMR resonances in Cs+-loaded human erythrocyte suspensions in the presence and absence of shift reagents, Biochemistry 31:1135–1144.

    CAS  Google Scholar 

  • Woessner, D. E., 1961, Nuclear transfer effects in nuclear magnetic resonance pulse experiments, J. Chem. Phys. 35:41–48.

    Article  CAS  Google Scholar 

  • Xu, A. S.-L., and Kuchel, P. W., 1991, Difluorophosphate as a 19F NMR probe of erythrocyte membrane potential, Eur. Biophys. J. 19:327–334.

    Article  PubMed  CAS  Google Scholar 

  • Xu, A. S.-L., Potts, J. R., and Kuchel, P. W., 1991, The phenomenon of separate intra-and extracellular resonances in 19F NMR spectra used for measuring membrane potential, Magn. Reson. Med. 18:193–198.

    Article  PubMed  CAS  Google Scholar 

  • York, M. J., Kuchel, P. W., and Chapman, B. E., 1984, A proton nuclear magnetic resonance study of ?-glutamyl-amino acid cyclotransferase in human erythrocytes, J. Biol. Chem. 259:15085–15088.

    PubMed  CAS  Google Scholar 

  • Young, J. D., and Ellory, J. C., 1977, Red cell amino acid transport, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), pp. 301–325, Academic Press, New York.

    Google Scholar 

  • Young, J. D., Wolowyk, M. W., Fincham, D. A., Cheeseman, C. L., Rabenstein, D. L., and Ellory, J. C., 1987, Conflicting evidence regarding the transport of a-glutamyl-dipeptides by human erythrocytes, Biochem. J. 242:309–311.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuchel, P.W., Kirk, K., King, G.F. (1994). NMR Methods for Measuring Membrane Transport. In: Hilderson, H.J., Ralston, G.B. (eds) Physicochemical Methods in the Study of Biomembranes. Subcellular Biochemistry, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1863-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1863-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5757-5

  • Online ISBN: 978-1-4615-1863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics