Monomolecular Layers in the Study of Biomembranes

  • Rudy A. Demel
Part of the Subcellular Biochemistry book series (SCBI, volume 23)

Abstract

Monomolecular layers have been of great value in the development of concepts of biomembranes. Phospholipids and other amphipathic membrane compounds with a balanced ration between the hydrophobic and hydrophilic part form an oriented monolayer with the polar portion in contact with the aqueous phase and the hydrocarbons extended above. Membrane lipids form insoluble monolayers since the concentration of lipid in the aqueous phase is essentially negligible.

Keywords

Hydrocarbon Doxorubicin Pyrene Triglyceride Lysozyme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, A. W., 1990, Physical Chemistry of Surfaces, Wiley-Interscience, New York.Google Scholar
  2. Albrecht, O., Gruler, H., and Sackmann, E., 1981, Pressure-composition phase diagrams of cholesterol-lecithin, cholesterol-phosphatidic acid and lecithin-phosphatidic acid mixed monolayers: A Langmuir film balance study, J. Colloid Interface Sci. 79:319–338.Google Scholar
  3. Alegria, G., and Dutton, P. L. 1991, Langmuir-Blodgett monolayer films of bacterial photosynthetic membranes and isolated reaction centers: Preparation, spectrophotometric and electrochemical characterization, Biochim, Biophys. Acta 1057:239–257.Google Scholar
  4. Batenburg, A. M., Brasseur, R., Ruysschaert, J. M., Van Scharrenburg, G. J. M., Slotboom, A. J., Demel, R. A., and De Kruijff, B., 1988a, Characterization of the interfacial behavior and structure of the signal sequence of Escherichia coli outer membrane pore protein, J. Biol. Chem. 263:4202–4207.PubMedGoogle Scholar
  5. Batenburg, A. M., Demel, R. A., Verkleij, A. J., and De Kruijff, B., 1988b, Penetration of the signal sequences of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization, Biochemistry 27:5678–5685.PubMedGoogle Scholar
  6. Bazzi, M. D., and Nelsestuen, G. L., 1988, Association of protein kinase C with phospholipid monolayers: Two stage irreversible binding, Biochemistry 27:6776–6783.PubMedGoogle Scholar
  7. Bhat, S. G., and Brockman, H. L., 1981, Enzymatic synthesis—hydrolysis of cholesteryl oleate in surface films, J. Biol. Chem. 256:3017–3023.PubMedGoogle Scholar
  8. Bhat, S. G., and Brockman, H. L. 1982, Lipid hydrolysis catalyzed by pancreatic cholesterol esterase. Regulation by substrate and product phase distribution and packing density, Biochemistry 21:1547–1552.PubMedGoogle Scholar
  9. Birdi, K. S., 1973, Spread monolayer films of protein at the air-water interface. J. Colloid Interface Sci. 43:545–547.Google Scholar
  10. Blume, A., 1979, A comparative study of the phase transitions of phospholipid bilayers and monolayers, Biochim, Biophys. Acta 557:32–44.Google Scholar
  11. Bougis, P., Rochat, H., Piéroni, G., and Verger, R., 1981, Penetration of phospholipid monolayers by cardiotoxins, Biochemistry 20:4915–4920.PubMedGoogle Scholar
  12. Breukink, E., Demel, R. A., De Korte-Kool, G., and De Kruijff, B., 1992, SecA insertion into phosopholipids is stimulated by negatively charged lipids and inhibited by ATP. A monolayer study, Biochemistry 31:1119–1124.PubMedGoogle Scholar
  13. Brunner, J., 1989, Testing topological models for the membrane penetration of the fusion peptide of influenza virus hemagglutinin, FEBS Lett. 257:369–372.PubMedGoogle Scholar
  14. Burger, K.N.J., Wharton, S. A., Demel, R. A., and Verkleij, A. J., 1991, Interaction of influenza virus hemagglutinin with a lipid monolayer. A comparison of the surface activities of intact virions isolated hemagglutinins and synthetic fusion peptide, Biochemistry 30:11173–11180.PubMedGoogle Scholar
  15. Cornell, D. G., Dluhy, R. A., Briggs, M. S., McKnight, J., and Gierasch, L. M., 1989, Conformation and orientations of a signal peptide interacting with phospholipid monolayers, Biochemistry 28:2789–2797.PubMedGoogle Scholar
  16. Crisp, D. J., 1949, Surface Chemistry, pp. 17–22, Butterworths, London.Google Scholar
  17. Darst, S. A., Ahlers, M., Melier, P. H., Kubalek, E. W., Blankenburg, R., Ribi, H. O., Ringsdorf, H., and Kornberg, R. D. 1991, Two dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules, Biophys. J. 59:387–396.PubMedGoogle Scholar
  18. De Bernard, L., 1958, Associations moléculaires entre les lipides. II Lécithine et cholesterol, Bull. Soc. Chim. Biol. 40:161–168.Google Scholar
  19. De Kruijff, B., Demel, R. A., and Van Deenen, L.L.M. 1972, The effect of cholesterol and epicholesterol incorporation on the permeability and phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes, Biochim. Biophys. Acta 255:331–347.Google Scholar
  20. Demel, R. A., 1974, Model membrane monolayers—Description of use and interaction, Methods Enzymol. 32:539–545.PubMedGoogle Scholar
  21. Demel, R. A., 1982, Lipid-protein interactions in monomolecular layers, in: Current Topics in Membranes and Transport (A. Martonosi, ed.), pp. 159–164, Plenum Press, New York.Google Scholar
  22. Demel, R. A., and De Kruijff, B., 1976, The function of sterols in membranes. Biochim. Biophys. Acta. 457:109–132.PubMedGoogle Scholar
  23. Demel, R. A., and Jackson, R. L., 1985, Lipoprotein lipase hydrolysis of trioleoylglycerol in a phospholipid interface, effect of cholestryl-oleate on catalysis. J. Biol. Chem. 260:9589–9592.PubMedGoogle Scholar
  24. Demel, R. A., Van Deenen, L.L.M., and Kinsky, S. C., 1965, Penetration of lipid monolayers by polyene antibiotic, J. Biol. Chem. 240:2749–2753.PubMedGoogle Scholar
  25. Demel, R. A., Van Deenen, L.L.M., and Pethica, B. A., 1967, Monolayer interactions of phospho-lipids and cholesterol, Biochim, Biophys. Acta 135:11–19.Google Scholar
  26. Demel, R. A., Geurts van Kessel, W.S.M., and Van Deenen, L.L.M., 1972a, The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol, Biochim. Biophys. Acta 266:26–40.Google Scholar
  27. Demel, R. A., Bruckdorfer, K. R., and Van Deenen, L.L.M., 1972b, Structural requirements of sterols for the interaction with lecithin at the air-water interface, Biochim. Biophys. Acta 255:311–320.PubMedGoogle Scholar
  28. Demel, R. A., Wirtz, K.W.A., Kamp, H. H., Geurts van Kessel, W.S.M., and Van Deenen, L.L.M., 1973, Phosphatidylcholine exchange protein from beef liver, Nature 246:102–105.Google Scholar
  29. Demel, R. A., Geurts van Kessel, W.S.M., Zwaal, R.F.A., Roelofsen, B., and Van Deenen, L.L.M., 1975, Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers, Biochim. Biophys. Acta 406:97–107.PubMedGoogle Scholar
  30. Demel, R. A., Jansen, J.W.C.M., Van Dijck, P.W.M., and Van Deenen, L.L.M., 1977a, The preferential interaction of cholesterol with different classes of phospholipids, Biochim, Biophys. Acta 465:1–10.Google Scholar
  31. Demel, R. A., Kalsbeek, R., Wirtz, K.W.A., and Van Deenen, L.L.M., 1977b, The protein-mediated net transfer of phosphatidylinositol in model systems, Biochim. Biophys. Acta 466:10–22.PubMedGoogle Scholar
  32. Demel, R. A., Shirai, K., and Jackson, R. L., 1982a, Lipoprotein lipase-catalyzed hydrolysis of tri[14C] oleoylglycerol in a phospholipid interface, Biochim. Biophys. Acta 713:629–637.PubMedGoogle Scholar
  33. Demel, R. A., Van Bergen, B.G.M., Van den Eeeden, A.L.G., Zborowski, J., and Defize, L.H.K., 1982b, Transfer properties of the bovine brain phospholipid transfer protein specificity towards phosphatidyl choline analogs and the inhibitory effect of sphingomyelin, Biochim. Biophys. Acta 710:264–270.PubMedGoogle Scholar
  34. Demel, R. A., Dings, P. J., and Jackson, R. L., 1984a, Effect of monolayer lipid structure and composition on the lipoprotein lipase-catalyzed hydrolysis of triacyl-glycerol, Biochim. Biophys. Acta 793:399–408.PubMedGoogle Scholar
  35. Demel, R. A., Lala, A. K., Kumari, S. N., and Van Deenen, L.L.M., 1984b, The effect of sterol oxygen function on the interaction with phospholipids, Biochim. Biophys. Acta 771:142–150.PubMedGoogle Scholar
  36. Demel, R. A., Jordi, W., Lambrechts, H., Van Damme, H., Hovius, R., and De Kruijff, B., 1989, Differential interactions of apo-and holocytochrome c with acidic membrane lipids in model systems and the implications for their import into mitochondria, J. Biol. Chem. 264:3988–3997.PubMedGoogle Scholar
  37. Demel, R. A., Goormaghtigh, E., and De Kruijff, B., 1990, Lipid and peptide specificities in signal peptide-lipid interaction in model membranes, Biochim. Biophys. Acta 1027:155–162.PubMedGoogle Scholar
  38. Demel, R. A., Schiavo, G., De Kruijff, B., and Montecucco, C., 1991, Lipid interaction of diphtheria toxin and mutants. A study with phospholipid and protein monolayer, Eur. J. Biochem. 197:481–486.PubMedGoogle Scholar
  39. Demel, R. A., Yin, C. C., Lin, B. Z., and Hauser, H., 1992a, Monolayer characteristics and thermal behavior of natural and synthetic phosphatidic acids, Chem. Phys. Lipids 60:209–223.PubMedGoogle Scholar
  40. Demel, R. A., Van Doom, J. M., and Van Der Horst, D. J., 1992b, Insect apolipophorin III. Interaction of locust apolipophorin III with diacylgycerol. Biochim. Biophys. Acta 1124:151–158.PubMedGoogle Scholar
  41. De Vrije, T., De Swart, R. L., Dowhan, W., Tommassen, J., and De Kruijff, B. 1988, Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes, Nature 334:173–175.PubMedGoogle Scholar
  42. De Wolf, F. A., Demel, R. A., Bets, D., Van Katz, C., and De Kruijff, B., 1991, Characterization of the interaction of doxorubicin with (poly) phosphoinositides in model systems: Evidence for specific interaction with phosphatidyl inositol monophosphate and-diphosphate, FEBS Let. 288:237–240.Google Scholar
  43. Ducharme, D., Salesse, C., and Leblanc, R. M., 1985, Ellipsometric studies of rod outer segment phospholipids at the nitrogen-water interface, Thin Solid Films 132:83–90.Google Scholar
  44. Duplaa, H., Convert, O., Sautereau, A. M., Tocanne, J. F., and Chassaing, G., 1992, Binding of substance P to monolayers and vesicles made of phosphatidylcholine and/or phosphatidylserine, Biochim. Biophys. Acta 1107:12–22.PubMedGoogle Scholar
  45. Eklund, K. K., Vuorinen, J., Mikkola, J., Virtanen, J. A., and Kinnunen, P.K.J., 1988, Ca2+-induced lateral phase separation in phosphatidic acid-phosphatidylcholine monolayers as revealed by fluorescence microscopy, Biochemistry 27:3433–3437.PubMedGoogle Scholar
  46. Fidelio, G. D., Ariga, T., and Maggio, B., 1991, Molecular parameters of gangliosides in mono-layers comparative evaluation of suitable purification procedures, J. Biochem. 110:12–16.PubMedGoogle Scholar
  47. Frenette, M., Knibiehler, M., Baty, D., Géli, V., Pattus, F., Verger, R., and Lazdunski, C., 1989, Interactions of colicin A domains with phospholipid monolayers and liposomes: Relevance to the mechanism of action, Biochemistry 28:2509–2514.PubMedGoogle Scholar
  48. Fukuda, K., Nakahara, H., and Kato, T., 1976, Monolayers and multilayers of anthraquinone derivatives containing long alkyl chains, J. Colloid Interface Sci. 54:431–437.Google Scholar
  49. Gaines, G. L., 1966, Insoluble Monolayers at Gas-Liquid Interfaces, Wiley, New York.Google Scholar
  50. Gallay, J., De Kruijff, B., and Demel, R. A., 1984, Sterol-phospholipid interactions in model membranes: Effects of polar group substitutions in the cholesterol side chain at C20 and C22, Biochim. Biophys. Acta 769:96–104.PubMedGoogle Scholar
  51. Gieles, P.M.C., 1987, Thesis, Technical University Eindhoven, The Netherlands.Google Scholar
  52. Gold, J., and Phillips, M. C., 1990, Effect of membrane lipid composition on the kinetics of cholesterol exchange between lipoproteins and different species of red blood cells, Biochim. Biophys. Acta 1027:85–92.PubMedGoogle Scholar
  53. Gorter, E., and Grendel, F., 1925, On bimolecular layers of lipids on the chromocytes of the blood, J. Exp. Med. 41:439–443.PubMedGoogle Scholar
  54. Gosh, D., Williams, M. A., and Tinoco, J., 1973, The influence of lecithin structure on their monolayer behavior and interactions with cholesterol, Biochim. Biophys. Acta 291:351–362.Google Scholar
  55. Graham, D. E., and Phillips, M. C., 1980, Proteins at liquid interfaces dilatational properties, J. Colloid Interface Sci. 76:227–239.Google Scholar
  56. Grainger, D. W., Reichert, A., Ringsdorf, H., and Salesse, C., 1990, Hydrolytic action of phosphalipase A2 in monolayers in the phase transition region: Direct observation of enzyme domain formation using fluorescence microscopy, Biochim. Biophys. Acta 1023:365–379.PubMedGoogle Scholar
  57. Grönberg, L., Ruan, Z., Bittman, R., and Slotte, J. P., 1991, Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers, Biochemistry 30:10746–10754.PubMedGoogle Scholar
  58. Gruen, D.W.R., and Wolfe, J., 1982, Lateral tensions and pressures in membranes and lipid mono-layers, Biochim. Biophys. Acta 688:572–580.PubMedGoogle Scholar
  59. Hawgood, S., Benson, B. J., Schilling, J., Damm, D., Clements, J. A., and White, R. T., 1987, Nucleotide and amino acid sequences of pulmonary surfactant protein SP18 and evidence for cooperation between SP18 and SP28-36 in surfactant lipid adsorption, Proc. Natl. Acad. Sci. USA 84:66–70.PubMedGoogle Scholar
  60. Heckl, W. M., Lösche, M., Scheer, H., and Möhwald, H., 1985, Protein-lipid interactions in phospholipid monolayers containing the bacterial antenna protein B800–850, Biochim. Biophys. Acta 810:73–83.Google Scholar
  61. Heckl, W. M., Zaba, B. N., and Möhwald, J., 1987, Interactions of cytochromes b5 and c with phospholipid monolayers, Biochim. Biophys. Acta 903:166–176.PubMedGoogle Scholar
  62. Helm, C. A., Tippmann-Krayer, P., Möhwald, H., Ais-Nielsen, H., and Kjaer, K., 1991, Phases of phosphatidylethanolamine monolayers studied by synchotron X-ray scattering, Biophys. J. 60:1457–1476.PubMedGoogle Scholar
  63. Heyn, S. P., Egger, M., and Gaub, H. E., 1990, Lipid and lipid-protein monolayers spread from a vesicle suspension: A microfluorescence film balance study, J. Phys. Chem. 94:5073–5078.Google Scholar
  64. Heyn, S. P., Tillmann, R. W., Egger, M., and Gaub, H. E., 1991, A miniaturized microfluorescence film balance for protein-containing lipid monolayers spread from a vesicle suspension, J. Biochem. Biophys. Methods 22:145–158.PubMedGoogle Scholar
  65. Hirasawa, K., Irvine, R. F., and Dawson, R.M.C., 1981, The hydrolysis of phosphatidylinositol monolayers at the air-water interface by the calcium ion-dependent phosphatidylinositol phos-phodiesterase of pig brain, Biochem. J. 193:607–614.PubMedGoogle Scholar
  66. Horowitz, A. D., Elledge, B., Whitsett, J. A., and Baatz, J. E., 1992, Effect of lung surfactant proteolipid SP-C on the organization of model membrane lipids: A fluorescence study, Biochim. Biophys. Acta 1107:44–54.PubMedGoogle Scholar
  67. Hoyt, D. W., Cyr, D. M., Gierasch, L. M., and Douglas, M. G., 1991, Interaction of peptides corresponding to mitochondrial presequences with membranes, J. Biol. Chem. 266:21693–21699.PubMedGoogle Scholar
  68. Jackson, R. L., Pattus, F., and Demel, R. A., 1979, Interaction of plasma apolipoproteins with lipid monolayers, Biochim. Biophys. Acta 556:369–387.PubMedGoogle Scholar
  69. Jackson, R. L., Ponce, E., McLean, L. R., and Demel, R. A., 1986, Comparison of the tricylglycerol hydrolase activity of human post-heparin plasma lipoprotein lipase and hepatic-triacylglycerol lipase. A monolayer study, Biochemistry 25:1166–1170.PubMedGoogle Scholar
  70. Jentoft, N., and Dearborn, D. G., 1979, Labeling of proteins by reductive methylation using sodium cyanoborohydride, J. Biol. Chem. 254:4359–4365.PubMedGoogle Scholar
  71. Johnson, S. J., Bayerl, T. M., Weihan, W., Noack, H., Penfold, J., Thomas, R. K., Kanellas, D., Rennie, A. R., and Sackmann, E., 1991, Coupling of spectrin and polylysine to phospholipid monolayers studied by specular reflection of neurons, Biophys. J. 60:1017–1025.PubMedGoogle Scholar
  72. Jones, J. D., McKnight, C. J., and Gierasch, L. M., 1990, Biophysical; studies of signal peptides: Implications for signal sequence functions and involvement of lipid in protein export, J. Bioenerg. Biomembr. 22:213–232.PubMedGoogle Scholar
  73. Joos, P., and Demel, R. A., 1969, The interaction energetics of cholesterol and lecithin in spread mixed monolayers at the air-water interface, Biochim. Biophys. Acta 183:447–457.PubMedGoogle Scholar
  74. Kalb, E., Frey, S., and Tamm, L. K., 1992, Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers, Biochim. Biophys. Acta 1103:307–316.PubMedGoogle Scholar
  75. Keller, R.C.A., Killian, J. A., and De Kruijff, B., 1992, Anionic phospholipids are essential for a-helix formation of the signal peptide of prePhoE upon interaction with phospholipid vesicles, Biochemistry 31:1672–1677.PubMedGoogle Scholar
  76. Knobler, C. H., 1990, Seeing phenomena in flatland. Studies of monolayers by fluorescence microscopy, Science 249:870–874.PubMedGoogle Scholar
  77. Kozarac, Z., Dhathathreyan, A., Möbius, D., 1988, Adsorption of cytochrome c to phospholipid monolayers studied by reflection spectroscopy, FEBS Lett. 229:372–376.PubMedGoogle Scholar
  78. Krebs, K. E., Ibdah, J. A., and Phillips, M. C., 1988, A comparison of the surface activities of human apolipoproteins A-I and A-II at the air-water interface, Biochim. Biophys. Acta 959:229–237.PubMedGoogle Scholar
  79. Kuroki, Y., and Akino, T., 1991, Pulmonary surfactant protein A specifically binds dipalmitoylphos-phatidylcholine, J. Biol. Chem. 266:3068–3073.PubMedGoogle Scholar
  80. Laboda, H. M., Glick, J. M., and Philips, M. C., 1986, Hydrolysis of lipid monolayers and the substrate specificity of hepatic lipase, Biochim. Biophys. Acta 876:233–242.PubMedGoogle Scholar
  81. Laboda, H. M., Glick, J. M., and Phillips, M. C., 1988, Influence of the structure of the lipid-water interface on the activity of hepatic lipase, Biochemistry 27:2313–2319.PubMedGoogle Scholar
  82. Lill, R., Dowhan, W., and Wickner, W., 1990, The ATPase activity of SecA is regulated by acidic phospholipids SecY and the leader and mature domains of precursor proteins, Cell 60:271–280.PubMedGoogle Scholar
  83. Lundberg, B., Svens, E., and Ekman, S., 1978, The hydration of phospholipids and phospholipid—cholesterol complexes, Chem. Phys. Lipids 22:285–292.PubMedGoogle Scholar
  84. McConnell, H. M., Tamm, L. K., and Weis, R. M., 1984, Periodic structures in lipid monolayer phase transitions, Proc. Natl. Acad. Sci. USA 81:3249–3253.PubMedGoogle Scholar
  85. MacDonald, R. C., and Simon, S. A., 1987, Lipid monolayer states and their relationship to bilayers, Proc. Natl. Acad. Sci. USA 84:4089–4093.PubMedGoogle Scholar
  86. McKnight, C. J., Briggs, M. S., and Gierasch, L. M., 1989, Functional and non-functional LamB signal sequences can be distinguished by their biophysical properties, J. Biol. Chem. 264:17293–17297.PubMedGoogle Scholar
  87. McLean, L. R., Demel, R. A., Socorro, L., Shinomiya, M., and Jackson, R. L., 1986, Mechanism of action of lipoprotein lipase, Methods Enzymol. 129:738–763.PubMedGoogle Scholar
  88. Malcolm, B. R., 1968, Molecular structure and deuterium exchange in monolayers of synthetic polypeptides, Proc. R. Soc. A London Ser. 305:363–385.Google Scholar
  89. Mattai, J., Hauser, H., Demel, R. A., and Shipley, G. G., 1989, Interactions of metal ions with phosphatidylserine bilayer membranes: Effect of hydrocarbon chain unsaturation, Biochemistry 28:2322–2330.PubMedGoogle Scholar
  90. Mayer, L. D., Nelsestuen, G. L., and Brockman, H. L., 1983, Prothrombin association with phospholipid monolayers. Biochemistry 22:316–324.PubMedGoogle Scholar
  91. Meller, P., 1985, Thesis, University of Munich, Germany.Google Scholar
  92. Moreau, H., Pieroni, G., Jolivet-Reynaud, C., Alouf, J. E., and Verger, R., 1988, A new kinetic approach for studying phospholipase C (Clostridium perfingens a toxin) activity on phospholipid monolayers, Biochemistry 27:2319–2323.PubMedGoogle Scholar
  93. Mozaffary, H., 1991, On the sign and origin of the surface potential of phospholipid monolayers, Chem. Phys. Lipids 59:39–47.Google Scholar
  94. Nag, K., Boland, C., Rich, N., and Keough, K.M.W., 1991, Epifluorescence microscopic observation of monolayers of dipalmitoylphosphatidylcholine: Dependence of domain size on compression rates, Biochim. Biophys. Acta 1068:157–160.PubMedGoogle Scholar
  95. Nicolay, K., Sauterau, A. M., Tocanne, J. F., Brasseur, R., Huart, R., Ruysschaert, J. M., and De Kruijff, B., 1988, A comparative model membrane study on structural effects of membrane-active positively charged anti-tumor drugs, Biochim. Biophys. Acta 940:197–208.PubMedGoogle Scholar
  96. Oosterlaken-Dijksterhuis, M. A., Haagsman, H. P., Van Golde, L.M.G., and Demel, R. A., 1991, Interaction of lipid vesicles with monomolecular layers containing lung surfactant proteins SP-B or SP-C, Biochemistry 30:8276–8281.PubMedGoogle Scholar
  97. Oosterlaken-Dijksterhuis, M. A., Haagsman, H. p., Van Golde, L.M.G., and Demel, R. A., 1991b, Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C, Biochemistry 30:10965–10971.PubMedGoogle Scholar
  98. Pattus, F., Slotboom, A. J., and De Haas, G. H., 1979, Regulation of phospholipase A2 activity by the lipid-water interface: A monolayer approach, Biochemistry 18:2691–2697.PubMedGoogle Scholar
  99. Pattus, F., Rothen, C., Streit, M., and Zahler, P., 1981, Further studies on the spreading of biomembranes at the air-water interface. Structure, composition, and enzyme activities of human erythrocyte and sarcoplasmic reticulum membrane films, Biochim. Biophys. Acta 647:29–39.PubMedGoogle Scholar
  100. Peeters, R. A., Veerkamp, J. H., and Demel, R. A., 1989, Are fatty acid-binding proteins involved in fatty acid transfer? Biochim. Biophys. Acta 1002:8–13.PubMedGoogle Scholar
  101. Peters, R., and Beck, K., 1983, Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis, Proc. Natl. Acad. Sci. USA 80:7183–7187.PubMedGoogle Scholar
  102. Pethica, B. A., 1955, The thermodynamics of monolayer penetration at constant area, Trans. Faraday Soc. 51:1402–1407.Google Scholar
  103. Phillips, M. C., 1970, Molecular interactions in mixed lecithin systems, Biochim. Biophys. Acta 196:35–44.PubMedGoogle Scholar
  104. Phillips, M. C., 1972, The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes, in: Progress in Surface and Membrane Science (J. F. Danielli, M. D. Rosenberg, and D. A. Cadenhead, eds.), Vol. 5, pp. 139–221, Academic Press, New York.Google Scholar
  105. Phillips, M. C., and Chapman, D., 1968, Monolayer characteristics of saturated 1,2-diacylphospha-tidylcholines and phosphatidylethanolamines at the air-water interface, Biochim. Biophys. Acta 163:301–313.PubMedGoogle Scholar
  106. Phillips, M. C., and Krebs, K. E., 1986, Studies of apolipoproteins at the air-water interface, Methods Ezymol. 128:387–403.Google Scholar
  107. Pilon, M., Jordi, W., De Kruijff, B., and Demel, R. A., 1987, Interactions of mitochondrial precursor protein apocytochrome c with phosphatidylserine in model membranes, Biochim. Biophys. Acta 902:207–216.PubMedGoogle Scholar
  108. Pisarchick, M., and Thompson, N. L., 1990, Binding of a monoclonal antibody and its Fab fragment to supported phospholipid monolayers measured by total internal reflection fluorescence microscopy, Biophys. J. 58:1235–1249.PubMedGoogle Scholar
  109. Popot, J. L., Demel, R. A., Sobel, A., Van Deenen, L.L.M., and Changeux, J. P. 1978, Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids, Eur. J. Biochem. 85:27–42.PubMedGoogle Scholar
  110. Possmayer, F., 1988, A proposed nomenclature for pulmonary surfactant associated proteins, Annu. Rev. Respir. Dis. 138:990–998.Google Scholar
  111. Quinn, P. J., and Dawson, R.M.C., 1969, Interactions of cytochrome c and [14C] carboxymethylated cytochrome c with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin, Biochem. J. 115:65–75.PubMedGoogle Scholar
  112. Quinn, P. J., and Dawson, R.M.C., 1970, An analysis of the interaction of protein with lipid monolayers at the air-water interface, Biochem. J. 116:617–680.Google Scholar
  113. Reinhardt-Schlegel, H., Kawamura, Y., Furuno, T., and Sasabe, H., 1991, Microstructure of phospholipid monolayers studied by dark field electron and fluorescence microscopy, J. Colloid Interface Sci. 147:295–306.Google Scholar
  114. Ries, H. E., Matsumoto, M., Uyeda, N., and Suito, E., 1975, Monomolecular layers viewed by electron microscopy, Adv. Chem. Ser. 144:286–293.Google Scholar
  115. Rojo, M., Hovius, R. E., Demel, R. A., Nicolay, K., and Walliman, T., 1991, Mitochondrial creatine kinase mediates contact formation between mitochondial membranes, J. Biol. Chem. 266:20290–20295.PubMedGoogle Scholar
  116. Rouser, G., 1983, Membrane composition, structure and function, in Membrane Fluidity in Biology (R. C. Aloia, ed.), Vol. 1, Academic Press, New York.Google Scholar
  117. Salesse, C. S., Ducharme, D., LeBlanc, R. M., and Boucher, F., 1990, Estimation of disk membrane lateral pressure and molecular area of rhodopsin by the measurement of its orientation at the nitrogen-water interface from an ellipsometric study, Biochemistry 29:4567–4575.PubMedGoogle Scholar
  118. Salesse, C. S., Ducharme, D., and LeBlanc, R. M., 1987, Direct evidence for the formation of a monolayer from a bilayer. An ellipsometric study at the nitrogen-water interface, Biophys. J. 52:351–352.PubMedGoogle Scholar
  119. Sasaki, T., and Demel, R. A., 1985, Net mass transfer of galactosyl ceramide stimulated by glycolipid transfer protein from pig brain, Biochemistry 24:1079–1083.PubMedGoogle Scholar
  120. Schiavo, G., Demel, R. A., and Montecucco, C., 1991, On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers, Eur. J. Biochem. 199:705–711.PubMedGoogle Scholar
  121. Schürholz, T., and Schindler, H., 1991, Lipid-protein surface films generated from membrane vesicles, Eur. Biophys. J. 20:71–78.PubMedGoogle Scholar
  122. Seelig, A., 1987, Local anesthetics and pressure, a comparison of dibucarine binding to lipid monolayers and bilayers, Biochim. Biophys, Acta 899:196–204.Google Scholar
  123. Seelig, A., and MacDonald, P. M., 1989, Binding of a neuropeptide, substance P, to neutral and negatively charged lipids, Biochemistry 28:2490–2496.PubMedGoogle Scholar
  124. Shiffer, K. A., Goerke, J., Düzgünes, N., Fedor, J., and Shohet, S. B., 1988, Interaction of erythrocyte protein 4.1 with phospholipids. A monolayer and liposome study, Biochim. Biophys. Acta 937:269–280.PubMedGoogle Scholar
  125. Slotte, J. P., 1992, Enzyme catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear, Biochemistry 31:5472–5477.PubMedGoogle Scholar
  126. Standish, M. M., and Pethica, B. A., 1967, Interactions in phospholipid-cholesterol mixed mono-layers at the air-water interface, Biochim. Biophys. Acta 144:659–665.PubMedGoogle Scholar
  127. Subramaniam, S., Seul, M., and McConnell, H. M., 1986, Lateral diffusion of specific antibodies bound to lipid monolayers on alkylated substrates, Proc. Natl. Acad. Sci. USA 83:1169–1173.PubMedGoogle Scholar
  128. Sugi, M., 1985, Langmuir-Blodgett films. A course towards molecular electronics, J. Mol. Electron. 1:3–17.Google Scholar
  129. Tamm, L. K., 1986, Incorporation of a synthetic mitochondrial signal peptide into charged and uncharged phospholipid monolayers, Biochemistry 25:7470–7476.PubMedGoogle Scholar
  130. Tamm, L. K., Tomich, J. M., and Saier, M. H., 1989, Membrane incorporation and induction of secondary structure of synthetic peptides corresponding to the N-terminal signal sequences, of the glucitol and mannitol permeases of Escherichia coli, J. Biol. Chem. 264:2587–2592.PubMedGoogle Scholar
  131. Taylor, D. M., De Olivera, O. N., and Morgan, H., 1990, Models for interpreting surface potential measurements and their application to phospholipid monolayers, J. Colloid Interface Sci. 139:508–518.Google Scholar
  132. Teerlink, T., De Kruijff, B., and Demel, R. A., 1980, The action of pimaricin, etruscomycin and amphotericin B on liposomes with varying sterol content, Biochim. Biophys. Acta 599:484–492.PubMedGoogle Scholar
  133. Theunissen, J.J.H., Jackson, R. L., Kempen, H.J.M., and Demel, R. A., 1986, Membrane properties of oxysterols. Interfacial orientation influence on membrane permeability and redistribution between membranes, Biochim. Biophys. Acta 860:66–74.PubMedGoogle Scholar
  134. Thuren, T., Eklund, K. K., Virtanen, J. A., and Kinnunen, P.K.J., 1990, Hydrolysis of supported pyrene-phospholipid monolayers by phospholipase A2, Chem. Phys. Lipids 55:55–60.PubMedGoogle Scholar
  135. Thuren, T., Wilcox, R. W., Sisson, P., and Waite, M., 1991, Hepatic lipase hydrolysis of lipid monolayers, J. Biol. Chem. 266:4853–4861.PubMedGoogle Scholar
  136. Tournois, H., Gieles, P., Demel, R. A., De Gier, J., and De Kruijff, B., 1989, Interfacial properties of gramicidin and gramicidin-lipid mixtures measured with static and dynamic monolayer techniques, Biophys. J. 55:557–569.PubMedGoogle Scholar
  137. Toyoshima, C., and Unwin, N., 1988, Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes, Nature 336:247–250.PubMedGoogle Scholar
  138. Träuble, H., 1971, Phasenumwandlungen in lipiden. Mögliche schaltprozesse in biologischen membranen, Naturwissenschaften 58:277–281.PubMedGoogle Scholar
  139. Trurnit, H. H., 1960, A theory and method for spreading of protein monolayers, J. Colloid Sci. 14:1–13.Google Scholar
  140. Uzgiris, E. E., 1987, Self-organization of IgE immunoglobulins on phospholipid films, Biochem. J. 242:293–296.PubMedGoogle Scholar
  141. Van Amerongen, A., Demel, R. A., Westerman, J., and Wirtz, K.W.A., 1989, Transfer of cholesterol and oxysterol derivatives by the non-specific lipid transfer protein (sterol carrier protein 2). A study on its mode of action, Biochim. Biophys. Acta 1004:36–43.PubMedGoogle Scholar
  142. Van Deenen, L.L.M., and De Gier, J., 1964, Chemical composition and metabolism of lipids in red cells of various animal species, in: The Red Blood Cell (C. Bishop and D. M. Surgenor, eds.), pp. 243–302, Academic Press, New York.Google Scholar
  143. Van den Tempel, M., and Lucassen-Reynders, E. H., 1983, Relaxation processes at fluid interfaces, Adv. Colloid Interface Sci. 18:281–286.Google Scholar
  144. Van Golde, L.M.G., Batenburg, J. J., and Robertson, B., 1988, The pulmonary surfactant system: Biochemical aspects and functional significance, Physiol. Rev. 68:374–455.PubMedGoogle Scholar
  145. Van Liempd, J.P.J.G., Boonman, A.A.H., Demel, R. A., Gieles, P.M.C., and Gorell, T.C.M., 1987, Non-selective squeeze-out of dioleoylphosphatidylcholine and dioleoylphosphatidyl glycerol from binary mixed monolayers with dipalmitoylphosphatidylcholine, Biochim. Biophys. Acta 897:495–501.PubMedGoogle Scholar
  146. Van’t Hof, R., Van Klompenburg, W., Pilon, M., Kozubek, A., De Korte-Kool, G., Demel, R. A., Weisbeek, P. J., and De Kruijff, B., 1993, The transit sequence mediates the specific interaction of the precursor of ferredoxin with chloroplast envelope membrane lipids, J. Biol. Chem. 268:4037–4042.Google Scholar
  147. Verger, R., and De Haas, G. H., 1976, Interfacial enzyme kinetics of lipolysis, Annu. Rev. Biophys. Bioenerg. 5:77–117.Google Scholar
  148. Weis, R. M., 1991, Fluorescence microscopy of phospholipid monolayer phase transitions, Chem. Phys. Lipids 57:227–239.PubMedGoogle Scholar
  149. Weis, R. M., and McConnell, H. M., 1985, Cholesterol stabilized the crystal-liquid interface in phospholipid monolayers, Biophys. J. 47:44a.Google Scholar
  150. Wirtz, K.W.A., 1991, Phospholipid transfer proteins, Annu. Rev. Biochem. 60:73–99.PubMedGoogle Scholar
  151. Yedgar, S., Cohen, R., Gatt, S., and Barenholz, Y., 1982, Hydrolysis of monomolecular layers of synthetic sphingomyelins by sphingomyelinase of Staphylococcus aureus, Biochem. J. 201:597–603.PubMedGoogle Scholar
  152. Zwaal, R.F.A., Demel, R. A., Roelofsen, B. and Van Deenen, L.L.M., 1976, The lipid bilayer concept of cell membranes, Trends Biochem. Sci. 1:112–114.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Rudy A. Demel
    • 1
  1. 1.Centre for Biomembranes and Lipid Enzymology, Department of Biochemistry of MembranesUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations