Skip to main content

Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy

III. Secondary Structures

  • Chapter
Physicochemical Methods in the Study of Biomembranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 23))

Abstract

The basic knowledge accumulated over the last twenty years on the different vibrations of polypeptides were reviewed in Chapter 8. Because of the complexity of naturally occurring proteins, most of these data have been obtained from the study of model compounds, from simple amino acid derivatives to large synthetic polypeptides, which can be crystallized in a single secondary structure. This chapter covers biologically synthesized proteins. Data on this subject are much more recent because the advent of the new generation of Fourier transform spectrophotometers only now provides high quality spectra. Simultaneously, manipulations of the spectra have been made possible by the concomitant digitalization of the spectra and the availability of low cost computers in laboratories. It was only in 1986 that the race for determination of secondary structure from manipulated IR spectra started with a paper by Byler and Susi (1986), although it is only fair to say that the results of several attempts to obtain secondary structures had been published before. The number of papers using infrared spectros-copy (IR) to obtain secondary structures has been growing exponentially ever since. One purpose of the present review is to point out, through the description and the comparison of the different methods, that interpretation of the results still needs caution. Indeed, while some spectral features of the main secondary structures are well established, others are not. Moreover, no agreement exists on a “correct” mathematical treatment of the spectra. Both the intrinsic uncertainties in the assignments and the methodological diversity open the door to flawed conclusions if the user is not properly aware of these problems. Such warnings have been issued previously (Haris and Chapman, 1992; Surewicz et al., 1993; Haris and Chapman, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, J., Haris, P. I., Lee, D. C., and Chapman, D., 1987b, Conformational changes in concan-avalin A associated with demetallization and a-methylmannose binding studied by Fourier-transform infrared spectroscopy, Biochim. Biophys. Acta 916:5–12.

    PubMed  CAS  Google Scholar 

  • Alvarez, J., Lee, D. C., Baldwin, S. A., and Chapman, D., 1987a, Fourier-transform infrared spectroscopy study of the structure and conformational changes of the human erythrocyte glucose transporter, J. Biol. Chem. 262:3502–3509.

    PubMed  CAS  Google Scholar 

  • Anderle, G., and Mendelsohn, R., 1987, Thermal denaturation of globular proteins. Fourier-infrared studies of the amide III spectra region, Biophys. J. 52:69–74.

    PubMed  CAS  Google Scholar 

  • Arrondo, J. L. R., Mantsch, H. H., Mullner, N., Pikula, S., and Martonosi, A., 1987, Infrared spectroscopy characterization of the structural changes connected with the E1-E2 transition in the Ca2+-ATPase of sarcoplasmic reticulum, J. Biol. Chem. 262:9037–9043.

    PubMed  CAS  Google Scholar 

  • Arrondo, J. L. R., Muga, A., Castresana, J., and Goni, F. M., 1993, Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy, Prog. Biophys. Molec. Biol. 59:23–56.

    CAS  Google Scholar 

  • Arrondo, J. L. R., Muga, A., Castresana, J., Bernabeu, C., and Goni, F. M., 1989b, An infrared spectroscopic study of ß-galactosidase structure in aqueous solutions, FEBS Lett. 252:118–120.

    CAS  Google Scholar 

  • Arrondo, J. L. R., Muga, A., Pardo, A., and Goni, F. M., 1988a, A FT-IR study of sarcoplasmic reticulum solubilization by triton X-100, Mikrochim. Acta 1:385–388.

    Google Scholar 

  • Arrondo, J. L. R., Young, N. M., and Mantsch, H. H., 1988b, The solution structure of conva-navalin A probed by FT-IR spectroscopy, Biochim. Biophys. Acta 952:261–268.

    PubMed  CAS  Google Scholar 

  • Arrondo, S. L. R., Gilles, A. M., Bârzu, O., Fernandjian, S., Yang, P. W., and Mantsch, H. H., 1989a, Investigation of adenylate kinase from Escherichia coli and its interaction with nucle-otides by Fourier-transform infrared spectroscopy, Biochem. Cell. Biol. 67:327–331.

    PubMed  CAS  Google Scholar 

  • Ayala, G., Carmona, P., de Cozar, M., and Monreal, J., 1987, Vibrational spectra and structure of myelin membranes, Eur. Biophys. J. 14:219–225.

    PubMed  CAS  Google Scholar 

  • Bandekar, J., 1992, Amide modes and protein conformation, Biochim. Biophys. Acta 1120:123–143.

    PubMed  CAS  Google Scholar 

  • Barlow, D. J., and Thornton, J. M., 1988, Helix geometry in proteins, J. Mol. Biol. 201:601–619.

    PubMed  CAS  Google Scholar 

  • Bates, J. B., 1976, Fourier transform infrared spectroscopy, Science 191:31–57.

    PubMed  CAS  Google Scholar 

  • Bazzi, M. D., and Woody, R. W., 1985, Oriented secondary structure in integral membrane proteins: Circular dichroism and infrared spectroscopy of cytochrome c oxidase in multilamellar films, Biophys. J. 48:957–966.

    PubMed  CAS  Google Scholar 

  • Blass, W. E., and Halsey, G. W., 1981, in: Deconvolution of Absorption Spectra, Academic Press, New York.

    Google Scholar 

  • Blundell, T., Barlow, D., Borkako, N., and Thornton, J., 1983, Solvent-induced distorsions and the curvature of a-helices, Nature 306:281–283.

    PubMed  CAS  Google Scholar 

  • Bracewell, R. N., 1990, Numerical transform, Science 248:697–704.

    PubMed  CAS  Google Scholar 

  • Brazhnikov, E. V., Chetverin, A. B., and Chirgadze, Y. N., 1978, Secondary structure of Na+, K+ dependent adenosine triphosphatase, FEBS Lett. 93:125–128.

    PubMed  CAS  Google Scholar 

  • Buchet, R., Carrier, D., Wong, P. T. T., Jona, I., and Martonosi, A., 1990, Pressure effects on sarcoplasmic reticulum: A Fourier transform infrared spectroscopic study, Biochim. Biophys. Acta 1023:107–118.

    PubMed  CAS  Google Scholar 

  • Buchet, R., Jona, I., and Martonosi, A., 1989, Correlation of structure and function in the Ca++AT-Pase of sarcoplasmic reticulum: A Fourier transform infrared spectroseopy (FTIR) study on the effects of dimethyl sulfoxide and urea, Biochim. Biophys. Acta 983:167–178.

    PubMed  CAS  Google Scholar 

  • Butler, W. L., 1979, Fourth-derivative spectra, Methods Enzymol. 56:501–515.

    PubMed  CAS  Google Scholar 

  • Butler, W. L., and Hopkins, D. W., 1970a, Higher derivative analysis of complex absorption spectra, Photochem. Photobiol. 12:439–450.

    Google Scholar 

  • Butler, W. L., and Hopkins, D. W., 1970b, An analysis of fourth-derivative spectra, Photochem. Photobiol. 12:451–456.

    Google Scholar 

  • Byler, D. M., and Susi, H., 1986, Examination of the secondary structure of proteins by deconvolved FTIR spectra, Biopolymers 25:469–487.

    PubMed  CAS  Google Scholar 

  • Cabiaux, V., Goormaghtigh, E., Wattiez, R., Falmagne, P., and Ruysschaert, J. M., 1989, Secondary structure of diphtheria toxin interacting with asolectin liposomes: An infrared spectroscopy study, Biochimie 71:153–158.

    PubMed  CAS  Google Scholar 

  • Cairns, M. T., Alvarez, J., Panico, M., Gibbs, A. F., Morris, H. R., Chapman, D., and Baldwin, S. A., 1987, Investigation of the structure and function of the human erythrocyte glucose transporter by proteolytic dissection, Biochim. Biophys. Acta 905:295–310.

    PubMed  CAS  Google Scholar 

  • Casal, H. L., and Mantsch, H. H., 1984, Polymorphic phase behavior of phospholipid membranes studied by infrared spectroscopy, Biochim. Biophys. Acta 779:381–401.

    PubMed  CAS  Google Scholar 

  • Casal, H. L., Köhler, U., Mantsch, H. H., and Arrondo, J. L. R., 1988, FT-IR spectra of proteins at low temperatures, Mikrochim. Acta 1:195–197.

    Google Scholar 

  • Castresana, J., Muga, A., and Arrondo, J. L. R., 1988, The structure of proteins in aqueous solutions: an assessment of triose phosphate isomerase structure by Fourier-transform infrared spectroscopy, Biochem. Biophys. Res. Commun. 152:69–75.

    PubMed  CAS  Google Scholar 

  • Caughey, B. W., Dong, A., Bhat, K. S., Ernst, D., Hayes, S. F., and Caughey, W. S., 1991, Secondary structure analysis of the scrapie-associated protein Prp 27–30 in water by infrared spectroscopy, Biochemistry 30:7672–7680.

    PubMed  CAS  Google Scholar 

  • Chapman, D., Jackson, M., and Haris, P. I., 1988, Investigation of membrane protein structure using Fourier-transform infrared spectroscopy, Biochem. Soc. Trans. 17:617–619.

    Google Scholar 

  • Chin, J. J., Jung, E. K. Y., and Jung, C. Y., 1986, Structural basis of human erythrocyte glucose transporter function in reconstituted vesicles: a helix orientation, J. Biol. Chem. 261:7101–7104.

    PubMed  CAS  Google Scholar 

  • Chirgadze, Y. N., Brazhnikov, E. V., and Nevskaya, N. A., 1976, Intramolecular distrosion of the a-helical structural of polypeptides, J. Mol. Biol. 102:781–792.

    PubMed  CAS  Google Scholar 

  • Chirgadze, Y. N., Fedorov, O. V., and Trushina, N. P., 1975, Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solution in heavy water, Biopolymers 14:679–694.

    PubMed  CAS  Google Scholar 

  • Compton, L. A., and Johnson, W. C., 1986, Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication, Anal. Biochem. 155:155–167.

    PubMed  CAS  Google Scholar 

  • Dong, A., Caughey, B., Caughey, W. S., Bhat, K., and Coe, J. E., 1992, Secondary structure of the pentraxin female protein in water determined by infrared spectroscopy: Effects of calcium and phosphorylcholine, Biochemistry 31:9364–9370.

    PubMed  CAS  Google Scholar 

  • Dong, A., Huang, P., and Caughey, W. S., 1990, Protein secondary structure in water from second-derivative amide I infrared spectra, Biochemistry 29:3303–3308.

    PubMed  CAS  Google Scholar 

  • Dong, A., Huang, P., and Caughey, W. S., 1992, Redox-dependent changes in ß-extended chain and turn structures of cytochrome c in water solution determined by second-derivative amide I infrared spectra, Biochemistry 31:182–189.

    PubMed  CAS  Google Scholar 

  • Dousseau, F., and Pézolet, M., 1990, Determination of the secondary structure contents of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods, Biochemistry 29:8771–8779.

    PubMed  CAS  Google Scholar 

  • Doyle, B. B., Bendit, E. G., and Blout, E. R., 1975, Infrared spectroscopy of collagen and collagenlike polypeptides, Biopolymers 14:937–957.

    PubMed  CAS  Google Scholar 

  • Dunach, M., Sabes, M., and Padros, E., 1983, Fourth-derivative analysis of tryptophan environment in proteins. Application to melittin, cytochrome c and bacteriorhodopsin, Eur. J. Biochem. 134:123–128.

    PubMed  CAS  Google Scholar 

  • Dwivedi, A. M., and Krimm, S., 1984, Vibrational analysis of peptides, polypeptides, and proteins. XVIII Conformational sensitivity of the a-helix spectrum: aI and aII-Poly (L-alamine), Biopolymers 23:923–943.

    PubMed  CAS  Google Scholar 

  • Earnest, T. N., Herzfeld, J., and Rothschild, K. J., 1990, Polarized FTIR of bacteriorhodopsin: Transmembrane a-helices are resistant to hydrogen-deuterium exchange, Biophys. J. 58:1539–1546.

    PubMed  CAS  Google Scholar 

  • Eckert, K., Grosse, R., Malur, J. and Repke, K. R. H., 1977, calculation and use of protein-derived conformation-related spectra for the estimate of the secondary structure of proteins from their infrared spectra, Biopolymers 16:2549–2563.

    PubMed  CAS  Google Scholar 

  • Ferraro, J. R., and Basile, L. S., (eds.) 1987, in: Fourier Transform Infrared Spectroscopy, Vols 1–3, Academic Press, New York.

    Google Scholar 

  • Fraser, P. E., Nguyen, J. T., Surewicz, W. K., and Kirschner, D. A., 1991, pH-dependent structural transitions of Alzheimer amyloid peptides, Biophys. J. 60:1190–1201.

    PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., and Suzuki, E., 1966, Resolution of overlapping absorption bands by least square procedures, Anal. Chem. 38:1770–1773.

    CAS  Google Scholar 

  • Fraser, R. D. B., and Suzuki, E., 1973, The use of least squares in data analysis in: Molecular Biology Part C: Physical Principles and Techniques of Protein Chemistry (Sydney J. Leach, ed.), Academic Press, New York.

    Google Scholar 

  • Frey, S., and Tamm, L. K., 1991, Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared spectroscopy study, Biophys. J. 60:922–930.

    PubMed  CAS  Google Scholar 

  • Fringeli, U. P., and Günthard, H. H., 1981, Infrared membrane spectroscopy, in: Membrane Spectroscopy (E. Grell ed.), pp. 270–332, Springer-Verlag, Berlin.

    Google Scholar 

  • Fry, D. C., Byler, D. M., Susi, H., Brown, Z. M., Kuby, S. A., and Mildvan, A. S., 1988, Solution structure of the 45-residue MgATP-binding peptide of adenylate cyclase as examined by 2-D NMR, FTIR and CD spectroscopy, Biochemistry 27:3588–3598.

    PubMed  CAS  Google Scholar 

  • Gasset, M., Baldwin, M. A., Fletterick, R., and Prusiner, S. B., 1993, Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infifectivity, Proc. Natl. Acad. Sci. USA 90:1–5.

    PubMed  CAS  Google Scholar 

  • Gasset, M., Baldwin, M. A., Lloyd, D. H., Gabriel, J. M., Holtzman, D. M., Cohen, F., Fletterick, R., and Prusiner, S. B., 1992, Predicted a-helical regions of the prion protein when synthesized as peptides form amyloid, Proc. Natl. Acad. Sci. USA 89:10940–10944.

    PubMed  CAS  Google Scholar 

  • George, A., and Veis, A., 1991, FTIRS in H2O demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro, Biochemistry 30:2312–2377.

    Google Scholar 

  • Glaeser, R. M., Downing, K. H., and Jap, B. K., 1991, What spectroscopy can still tell us about the secondary structure of bacteriorhodopsin, Trends Biochem. Sci. 59:934–938.

    CAS  Google Scholar 

  • Goormaghtigh, E., and Ruysschaert, J. M., 1990, Polarized attenuated total reflection spectroscopy as a tool to investigate the conformation and orientation of membrane components, in: Molecular Description of Biological Membranes by Computer-Aided Conformational Analysis, (R. Brasseur, ed.) Vol. 1, p. 285–329, CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  • Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J. M., 1990, Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films, Eur. J. Biochem. 193:409–420.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., De Meutter, J., Vanloo, B., Brasseur, R., Rosseneu, M., and Ruysschaert, J. M., 1989b, Evaluation of the secondary structure of apo B100 in low density lipoprotein (LDL) by infrared spectroscopy, Biochim. Biophys. Acta 1006:147–150.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., Martin, I., Vandenbranden, M., Brasseur, R., and Ruysschaert, J. M., 1989a, Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipids bilayers, Biochem. Biophys. Res. Commun. 158:610–616.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., Ruysschaert, J. M., and Scarborough, G. A., 1988, High yield incorporation of the neurospora plasma membrane H+ ATPase into proteoliposomes: Lipid requirement and secondary structure of the enzyme by IR spectroscopy, Prog. Clin. Biol. Res. 273:51–56.

    PubMed  CAS  Google Scholar 

  • Gorga, J. C., Dong, A., Manning, M. C., Woody, R. W., Conghey, W. S. and Strominger, J. L., 1989, Comparison of the secondary structures of human class I and class II major histocom-patibility complex antigens by Fourier-transform infrared and circular dichroism spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 86:2321–2325.

    PubMed  CAS  Google Scholar 

  • Görne-Tschelnokow, U., Naumann, D., Weise, C., and Hucho, F., 1993, Secondary structure and temperature behavior of acetylcholinesterase. Studies by Fourier-transform infrared spectroscopy, Eur. J. Biochem. 213:1235–1242.

    PubMed  Google Scholar 

  • Gotto, A. M., Levy, R. I., and Frederickson, 1968, Observation on the conformation of human beta lipoprotein: Evidence for the occurrence of beta structure, Proc. Natl. Acad. Sci. USA 60:1436–1441.

    PubMed  CAS  Google Scholar 

  • Griffith, P. R. (ed.), 1978, in: Transform Techniques in Chemistry, Plenum Press, New York.

    Google Scholar 

  • Griffiths, P. R., 1983, Fourier-transform infrared spectroscopy, Science 222:297–302.

    PubMed  CAS  Google Scholar 

  • Haris, P. I., and Chapman, D., 1988, Fourier-transform infrared spectra of the polypeptide al-amethicin and a possible structural similarity with bacteriorhodopsin, Biochim. Biophys. Acta 943:375–380.

    PubMed  CAS  Google Scholar 

  • Haris, P. I., and Chapman, D., 1992, Does Fourier-transform infrared spectroscopy provide useful information on protein structure? Trends Biochem. Sci. 17:328–333.

    PubMed  CAS  Google Scholar 

  • Haris, P. I., Chapman, D., Harrison, R. A., Smith, K. F., and Perkins, S. J., 1990, Conformational transition between native and reactive center cleaved forms of a1-antitrypsin by Fourier-transform infrared spectroscopy and small-angle neutron scattering, Biochemistry 29:1377–1380.

    PubMed  CAS  Google Scholar 

  • Haris, P. I., Coke, M., and Chapman, D., 1989, Fourier-transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin, Biochim. Biophys. Acta 995:160–167.

    PubMed  CAS  Google Scholar 

  • Haris, P. I., Lee, D. C., and Chapman, D., 1986, A Fourier-transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S, Biochim. Biophys. Acta 874:255–265.

    PubMed  CAS  Google Scholar 

  • Haris, P. I., Robillard, G. T., van Dijk, A. A., and Chapman, D., 1992, Potential of 13C and 15N labeling for studying protein-protein interactions using Fourier-transform infrared spectroscopy, Biochemistry 31:6279–6284.

    PubMed  CAS  Google Scholar 

  • He, W-Z., Newel, W. R., Haris, P. I., Chapman, D., and Barber, J., 1991, Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier-transform infrared spectroscopy, Biochemistry 30:4552–4559.

    PubMed  CAS  Google Scholar 

  • He, W-Z., Newell, W. R., Haris, P. I., Chapman, D., and Barber, J., 1991, Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier-transform infrared spectroscopy, Biochemistry 30:4552–4559.

    PubMed  CAS  Google Scholar 

  • Heise, H. M., Marbach, R., Janatsch, G., and Kruse-Jarres, J. D., 1989, Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy, Anal. Chem. 61:2009–2015.

    PubMed  CAS  Google Scholar 

  • Hennessey, J. P., and Johnson, W. C., 1981, Information content in the circular dichroism of proteins, Biochemistry 20:1085–1094.

    PubMed  CAS  Google Scholar 

  • Herzyk, E., Lee, D. C., Dunn, R. C., Bruckdorfer, K. R., and Chapman, D., 1987, Changes in the secondary structure of apolipoprotein B-100 after Cu++ catalysed oxidation of human low-density lipoproteins monitored by Fourier-transform infrared spectroscopy, Biochim. Biophys. Acta 922:145–154.

    PubMed  CAS  Google Scholar 

  • Holloway, P. W., and Buchheit, C., 1990, Topography of the membrane-binding domain of cyto-chrome b5 in lipids by Fourier-transform infrared spectroscopy, Biochemistry 29:9631–9637.

    PubMed  CAS  Google Scholar 

  • Holloway, P. W., and Mantsch, H. H., 1989, Structure of cytochrome b5 in solution by Fourier-transform infrared spectroscopy, Biochemistry 28:931–935.

    PubMed  CAS  Google Scholar 

  • Hunt J. F. 1988, An influence of tertiary structure on protein infrared spectra, Biophys. J. 53: 97a.

    Google Scholar 

  • Hunt, J. F., Earnest, T. N., Engelman, D. M., and Rothschild, K. J., 1988, An FTIR study of integral membrane protein folding, Biophys. J. 53: 97a.

    Google Scholar 

  • Ichikawa, T., and Terada, H., 1979, Estimation of state and amount of phenylalanine residues in proteins by second derivative spectrophotometry, Biochim. Biophys. Acta 580:120–128.

    PubMed  CAS  Google Scholar 

  • Jakobson, R. J., Brown, L. L., Hutson, T. B., Fink, D. J., and Veis, A., 1983, Intramolecular interactions in collagen self assembly as revealed by Fourier-transform infrared spectroscopy, Science 220:1288–1290.

    Google Scholar 

  • Jakobson, R. J., Wasacz, F. M., Brasch, J. W., and Smith, K. B., 1986, The relationship of bound water to the IR amide I bandwidth of albumin, Biopolymers 25:639–654.

    Google Scholar 

  • Janatsch, G., Kruse-Jarres, J. D., Marbach, R., and Heise, H. M., 1989, Multivariate calibration for assays in clinical chemistry using attenuatted total reflection infrared spectra of human blood plasma, Anal. Chem. 61:2016–2023.

    PubMed  CAS  Google Scholar 

  • Jap, B. K., Maestre, M. F., Hayward, S. B., and Glaeser, R. M., 1983, Peptide-chain secondary structure of bacteriorhodopsin, Biophys. J. 43:81–89.

    PubMed  CAS  Google Scholar 

  • Kabach, W., and Sander, S., 1983, Biopolymers 22:2577–2637.

    Google Scholar 

  • Kackson, M., Haris, P. I., and Chapman, D., 1991, Fourier-transform infrared spectroscopic studies of Ca2+-binding proteins, Biochemistry 30:9681–9686.

    Google Scholar 

  • Kalnin, N. N., Baikalov, I. A., and Venyaminov, S. Y., 1990, Quantitative IR spectrophotometry of peptides compounds in water (H2O) solutions. III. Estimation of the protein secondary structure, Biopolymers Biopolymers 30:1273–1280.

    CAS  Google Scholar 

  • Kamegai, J., Kimura, S., and Imanishi, Y., 1986, Conformation of sequential polypeptide poly (Leu-Leu-D-Phe-Pro) and formation of ion channel across bilayer lipid membrane, Biophys. J. 49:1101–1108.

    PubMed  CAS  Google Scholar 

  • Kauppinen, J. K., Moffat, D. J., and Mantsch, H. H., 1981c, Noise in Fourier self-deconvolution, Appl. Opt. 20:1866–1880.

    PubMed  CAS  Google Scholar 

  • Kauppinen, J. K., Moffat, D. J., Mantsch, H. H., and Cameron, D. G., 1981a, Fourier self-deconvolution: A method for resolving intrinsically overlapped bands, Appl. Spectrosc. 35:271–276.

    CAS  Google Scholar 

  • Kauppinen, J. K., Moffat, D. J., Mantsch, H. H., and Cameron, D. G., 1981b, Fourier transform in the computation of self-deconvolution and first-order derivatives spectra of overlapped band contours, Anal. Chem. 53:1454–1457.

    CAS  Google Scholar 

  • Kauppinen, J. K., Moffat, D. J., Mantsch, H. H., and Cameron, D. G., 1982, Smoothing of spectral data in the Fourier domain, Appl. Opt. 21:1866–1872.

    PubMed  CAS  Google Scholar 

  • Kennedy, D. F., Crisman, M., Toniolo, C., and Chapman, D., 1991, Studies of peptides forming 310- and a-helices and ß-bend ribbon structures in organic solutions and in model biomembranes by Fourier-transform infrared spectroscopy, Biochemistry 30:6541–6548.

    PubMed  CAS  Google Scholar 

  • Kennedy, D. F., Slotboom, A. J., de Haas, G. H., and Chapman, D., 1990, A Fourier-transform infrared spectroscopy (FTIR) of porine and bovine pancreatic phospholipase A2 and their interactions with substrate analogues and a transition-state inhibition, Biochim. Biophys. Acta 1040:317–326.

    PubMed  CAS  Google Scholar 

  • Kleffel, B., Garavito, R. M., Baumeister, W., and Rosenbusch, J. P., 1985, Secondary structure of a channel-forming protein: porin from E. coli outer membranes, EMBO J. 4:1589–1592.

    PubMed  CAS  Google Scholar 

  • Krimm, S., and Dwivedi, A. M., 1982, Infrared spectrum of the purple membrane: Clue to a proton conduction mechanism? Science 23:407–408.

    Google Scholar 

  • Lacsko, I., Hollosi, M., Ürge, L., Ugen, K. E., Weiner, D. B., Mantsch, H. H., Thurin, J., and Ötvös, Jr., 1992, Synthesis and conformational studies of N-glycosylated analogues of the HIV-1 principal neutralizing determinant, Biochemistry 31:4282–4288.

    Google Scholar 

  • Lavialle, F., Adams, R. G., and Levin, I. W., 1982, Infrared spectroscopic study of the secondary structures of Melittin in water, 2-chloroethanol and phospholipid dispersion, Biochemistry 21:2305–2312.

    PubMed  CAS  Google Scholar 

  • Lazarev, Y. A., Grishkovsky, B. A., and Khromova, T. B., 1985, Amide I band of IR spectrum and structure of collagen and related polypeptides, Biopolymers 24:1449–1478.

    PubMed  CAS  Google Scholar 

  • Lee, D. C., Haris, P. I., Chapman, D., and Mitchell, R. C., 1990, Determination of protein secondary structure using factor analysis of infrared spectra, Biochemistry 29:9185–9193.

    PubMed  CAS  Google Scholar 

  • Lee, D. C., Hayward, J. A., Restall, C. J., and Chapman, D., 1985, Second-derivative infrared spectroscopic studies of the secondary structures of bacteriorhodopsin and Ca++ ATPase.

    Google Scholar 

  • Levitt, M., and Greer, J., 1977, Secondary structure in globular proteins, J. Mol. Biol. 114:181–239.

    PubMed  CAS  Google Scholar 

  • Maddams, W. F., 1980, The scope and limitations of curve fitting, Appl. Spectrosc. 34:245–267.

    CAS  Google Scholar 

  • Mitchell, R. C., Haris, P. I., Fallowfield, C., Keeling, D. J., and Chapman, D., 1988, Fourier-transform infrared spectroscopy studies on gastric H+/K+-ATPase. Biochim. Biophys. Acta 947:31–38.

    Google Scholar 

  • Moh, P. P., Fiamingo, F. G., and Alben, J. O., 1987, Conformational sensitivity of beta-93 cysteine SH to ligation of hemoglobin observed by FT-IR spectroscopy, Biochemistry 26:6243–6249.

    PubMed  CAS  Google Scholar 

  • Muga, A., Mantsch, H. H., and Surewicz, W. K., 1991a, Apoytochrome c interaction with phospholipid membranes studied by Fourier-transform infrared spectroscopy, Biochemistry 30:2625–2629.

    Google Scholar 

  • Muga, A., Mantsch, H. H., and Surewitcz, W. K., 1991b, Membrane-binding induces destabilization of cytochrome c structure, Biochemistry 30:7219–7224.

    PubMed  CAS  Google Scholar 

  • Nabedryk, E., Garavito, R. M., and Breton, J., 1988, The orientation of ß-sheets in porin. A polarized Fourier-transform infrared spectoscopic investigation, Biophys. J. 53:671–676.

    PubMed  CAS  Google Scholar 

  • Naumann D., Schultz C., Görne-Tschelnokow, U., and Hucho F., 1993, Secondary structure and temperature behavior of the acetylcholine receptor by Fourier-transform infrared spectroscopy, Biochemistry 32:3162–3168.

    PubMed  CAS  Google Scholar 

  • Nevskaya, N. A., and Chirgadze, Y. N., 1976, Infrared spectra and resonance interactions of amide I and II vibrations of a-helix, Biopolymers 15:637–648.

    PubMed  CAS  Google Scholar 

  • Nikolov, S., and Kantchev, K., 1987, Deconvolution of Lorentzian broadened spectra. I. Direct deconvolution, Nucl. Instrum. Methods Phys. Res. A256, 161–167.

    CAS  Google Scholar 

  • Ollinger, J. M., Hill, D. M., Jakobsen, R. S., and Broody, R. S., 1986, Fourier-transform infrared studies of ribonuclease in H2O and 2H2O solutions, Biochim. Biophys. Acta 869:89–98.

    Google Scholar 

  • Oxtoby, D. W., 1981, Vibrational relaxation in liquids, Annu. Rev. Phys. Chem. 32:77–101.

    CAS  Google Scholar 

  • Padros, E., Dunach, M., Morros, A., Sabes, M., and Manosa, J., 1984, Fourth-derivative spec-trophotometry of proteins, Trends Bioch. Soc. 36:508–511.

    Google Scholar 

  • Perkins, S. J., Nealis, A. S., Haris, P. I., Chapman, D., Goundis, D., and Reid, K. B. M., 1989, Secondary structure in properdin of the complement cascade and related proteins: A study by Fourier-transform infred spectroscopy, Biochemistry 28:7176–7182.

    PubMed  CAS  Google Scholar 

  • Petrelski, S. J., Abrakawa, T., Kenney, W. C., and Byler, D. M., 1991c, The secondary structure of two recombinant human growth factor, platelet-derived growth factor and basic fibroblast growth factor as determined by Fourier-transform infrared spectroscopy, Arch. Biochem. Biophys. 285:111–115.

    Google Scholar 

  • Petrelski, S. J., Byler, D. M., and Liebman, M. N., 1991a, Comparison of various molecular forms of bovine trypsin: Correlation of infrared spectra with X-ray crystal structures, Biochemistry 30:133–143.

    Google Scholar 

  • Petrelski, S. J., Byler, D. M., and Thompson, M. P., 1991b, Infrared spectroscopy descrimination between a-and 310-helices in globular proteins: Reexamination of Amide I infrared bands of a-lactalbumin and their assignment to secondary structures, Int. J. Protein Res. 37:508–512.

    Google Scholar 

  • Petrelski, S. J., Byler, D. M., and Thompson, M. P., 1991d, Effect of metal ion binding on the secondary structure of bovine a-lactalbumin as examined by infrared spectroscopy, Biochemistry 30:8797–8804.

    Google Scholar 

  • Purcell, J. M., and Susi, H., 1984, Solvent denaturation of proteins as observed by resolution-enhanced Fourier-transform infrared spectroscopy, J. Biochem. Biophys. Methods 9:193–199.

    PubMed  CAS  Google Scholar 

  • Rainetau, D., Wolf, C., and Lavialle, F., 1989, Effect of calcium and calcium analogs on calmodulin: A Fourier-transform infrared and electron spin resonance investigation, Biochim. Biophys. Acta 1011:81–87.

    Google Scholar 

  • Rao, G. R., and Zerbi, G., 1984, Factor analysis and least-squares curve-fitting of infrared spectra: an application to the study of phase transition in organic molecules, Appl. Spectrosc. 38:795–803.

    CAS  Google Scholar 

  • Rath, P., Bouché, O., Merril, A. R., Cramer, W. A., and Rotschild, K. J., 1991, Fourier-transform infrared evidence for a predominantly a-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin El, Biophys. J. 59:516–522.

    PubMed  CAS  Google Scholar 

  • Renugopalakrishnan, V., Horowitz, P. M., and Glimcher, M. J., 1985, Structural studies of phos-vitin in solution and in the solid state, J. Mol. Biol. 260:11406–11413.

    CAS  Google Scholar 

  • Restall, C. J., Coke, M., Phillips, E., and Chapman, D., 1986, Derivative spectroscopy of tryp-tophan fluorescence used to study conformational transitions in the Ca++ +Mg++-adenosine triphosphatase of sarcoplasmic reticulum, Biochim. Biophys. Acta. 874:305–311.

    PubMed  CAS  Google Scholar 

  • Rial, E., Muga, A., Valpuesta, J. M., Arrondo, J. L. R., and Goni, F. M., 1990, Infrared spec-troscopic studies of detergent-solubilized uncoupling protein from brown-adipose-tissue mito-chondrial, Eur. J. Biochem. 188:83–89.

    PubMed  CAS  Google Scholar 

  • Rothschild, K. J., and Clark, N. A., 1979a, Polarized infrared spectroscopy of oriented purple membrane, Biophys. J. 25:473–488.

    PubMed  CAS  Google Scholar 

  • Rothschild, K. J., and Clark, N. A., 1979b, Anomalous amide I infrared absorption of purple membrane, Science 204:311–312.

    PubMed  CAS  Google Scholar 

  • Rothschild, K. J., Sanches, R., and Clark, N. A., 1982, Infrared absorption of photoreceptor and purple membranes, Methods Enzymol. 88:696–714.

    CAS  Google Scholar 

  • Rothschild, K. J., Sanches, R., De Grip, W., 1979, Fourier-transform infrared absorption of photo-receptors membranes: I. Group assignments based on rhodopsin delipidation and regeneration, Biochim. Biophys. Acta 596:333–351.

    Google Scholar 

  • Rothschild, K. J., Sanches, R., Hsiao, T. L., and Clark, N. A., 1980, A spectroscopic study of rhodopsin alpha-helix orientation, Biophys. J. 31:53–64.

    PubMed  CAS  Google Scholar 

  • Sarver, R. W., and Krueger, W. C., 1993, Infrared investigation of proteins deposited on polyethylene films, Anal. Biochem. 519-525.

    Google Scholar 

  • Sarver, R. W., and Kruerger, W. C., 1991, Protein secondary structure from Fourier-transform infrared spectroscopy: A database analysis, Anal. Biochem. 194:89–100.

    PubMed  CAS  Google Scholar 

  • Savitzky, A. and Golay M. J. E. 1964, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36:1627–1639.

    CAS  Google Scholar 

  • Suga, H., Shirabe, K., Yamamoto, T., Tosumi, M., Umeda, M., Nishinmura, C., Nakazawa, A., Nakamishi, M. and Arata, Y., 1991, Structural analyses of a channel-forming fragment of colicin El incorporated into lipid vesicles: Fourier-transform infrared and tryptophan fluorescence studies, J. Biol. Chem. 266:13537–13543.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K., and Mantsch, H. H., 1988a, New insight into protein secondary structure from resolution-enhanced infrared spectra, Biochim. Biophys. Acta 952:115–130.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K. and Mantsch, H. H., 1988b, Solution and membrane structure of enkephalins as studied by infrared spectroscopy, Biochem. Biophys. Res. Comm. 150:245–251.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K., Leddy, J. J., and Mantsch, H. H., 1990, Structure, stability, and receptor interaction of cholera toxin as studied by Fourier-transform infrared spectroscopy, Biochemistry 29:8106–8111.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K., Mantsch, H. H., and Chapman, D., 1993, Determination of protein secondary structure by Fourier-transform infrared spectroscopy: A critical assessement, Biochemistry 32:389–394.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K., Mantsch, H. H., Stahl, G. L., and Epand, R. M., 1987c, Infrared spectroscopy evidence of conformational transitions of an atrial natriuretic peptide, Proc. Natl. Acad. Sci. USA 84:7028–7030.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K., Moscarello, M. A., and Mantsch, H. H., 1987b, Fourier transform infrared investigation of the interaction between myelin basic protein and dimyristoylphosphatidyl-glycerol bilayers, Biochemistry 26:3881–3886.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K., Moscarello, M. A., and Mantsch, H. H., 1987a, Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectroscopy, J. Biol. Chem. 262:8598–8602.

    PubMed  CAS  Google Scholar 

  • Surewicz, W. K., Szabo, A. G., and Mantsch, H. H., 1987d, Conformational properties of azurin in solutions determined from resolution-enhanced Fourier-transform infrared spectra, Eur. J. Biochem. 167:519–523.

    PubMed  CAS  Google Scholar 

  • Susi, H., and Byler, D. M., 1983, Protein structure by Fourier-transform infrared spectroscopy: second derivative spectra, Biochem. Biophys. Res. Commun. 115:391–397.

    PubMed  CAS  Google Scholar 

  • Susi, H., and Byler, D. M., 1986, Resolution-enhanced Fourier-transform infrared spectroscopy of enzymes, Methods Enzymol. 130:290–311.

    PubMed  CAS  Google Scholar 

  • Susi, H., and Byler, D. M., 1987, Fourier-transform infrared study of proteins with parallel ß-chains, Arch. Biochem. Biophys. 258:465–469.

    PubMed  CAS  Google Scholar 

  • Susi, H., Timaseff, S. N., and Stevens, L., 1967, Infrared spectra and protein conformations in aqueous solutions: I. The amide I band in H2O and D2O solution, J. Biol. Chem. 242:5460–5466.

    PubMed  CAS  Google Scholar 

  • Suzuki, E., 1967, A quantitative study of the amide vibrations in the infrared spectrum of silk fibroin, Spectrochimica Acta 23A: 2303–2308.

    Google Scholar 

  • Swedberg, S. A., Pesek, J. J., and Fink, A. L., 1990, Attenuated total reflection Fourier-transform infrared analysis of an acyl-enzyme intermediate of a-chymotrypsin, Anal. Biochem. 186:153–158.

    PubMed  CAS  Google Scholar 

  • Taillandier, E., Fort, L., Liquier, J., Couppez, M., and Sautiere, P., 1984, Role of the protein a helices in histone-DNA interactions studied by vibrational spectroscopy, Biochemistry 23:2644–2650.

    PubMed  CAS  Google Scholar 

  • Talsky, G., Mayring, L., and Kreuzer, H., 1978, High resolution, higher-order UV/VIS derivative spectrophotometry, Angew. Chem. Int. Ed. Engl. 17:785–799.

    Google Scholar 

  • Teruel, J. A., Villalain, J., and Gomez-Fernandez, J. C., 1990, Effect of protease digestion on the secondary structure of sarcoplasmic reticulum Ca++-ATPase as seen by FTIR spectroscopy, Int. J. Biochem. 22:779–783.

    PubMed  CAS  Google Scholar 

  • Thiaudière, E., Soekarjo M., Kuchinka E., Kuhn A. and Vogel H. 1993, Structural characterization of membrane insertion of M13 procoat, M13 coat, and Pf3 coat proteins, Biochemistry 32:12186–12196.

    PubMed  Google Scholar 

  • Timasheff, S. N., Susi, H., and Stevens, L., 1967, Infrared spectra and protein conformations in aqueous solutions: II. Survey of globular proteins, J. Biol. Chem. 242:5467–5473.

    PubMed  CAS  Google Scholar 

  • Tinker, D. A., Krebs, E. A., Feltham, I. C., Atta-Poku, S. K., and Ananthanarayanan, V. S., 1988, Synthetic ß-turn peptides as substrates for a tyrosine protein kinase, J. Biol. Chem. 263:5024–5026.

    PubMed  CAS  Google Scholar 

  • Toniolo, C., and Benedetti, E. 1991, The polypeptide 310helix, TIBS 16:350–353.

    PubMed  CAS  Google Scholar 

  • Toniolo, C., Bonora, G. M., Heimer, E. P., and Felix, A. M., 1987, Structure, solubility, and reactivity of peptides. A conformational study of two protected key intermediate from a large-scale synthesis of thyomosin alpha 1, Int. J. Pept. Protein Res. 30:232–239.

    PubMed  CAS  Google Scholar 

  • Torii, H., and Tasumi M., 1992, Model calculations on the amide I infrared bands of globular proteins, J. Chem. Phys. 96:3379–3387.

    CAS  Google Scholar 

  • Trewhella, J., Liddle, W. K., Heidon, D. B., and Strymnadka, N., 1989, Calmodulin and troponin c structures studied by Fourier transform infrared spectroscopy: Effects of Ca++ and Mg++ binding, Biochemistry 28:1294–1301.

    PubMed  CAS  Google Scholar 

  • Valpuesta, J. M., Arrondo, J. L. R., Barbero, M. C., Pons, M., and Goñi, F. M., 1986, Membrane-surfactant interactions: The role of surfactant in mitochondrial complex III-phospholipid-triton X-100 mixed micelles, J. Biol. Chem. 261:6578–6584.

    PubMed  CAS  Google Scholar 

  • Van Hoek, A. N., Wiener, M., Bicknese, S., Miercke, L., Biwersi, J., and Verkman, A. S., 1993, Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy, Biochemistry 32:11847–11856.

    PubMed  Google Scholar 

  • Van Wart, H. E., and Sheraga, H. A., 1978, Raman and resonance Raman spectroscopy, Methods Enzymol. 49:67–149.

    PubMed  Google Scholar 

  • Venyaminov, S. Y., and Kalnin, N. N., 1991a, Quantitative IR spectrophotometry of peptides compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption band, Biopolymers 30:1243–1257.

    Google Scholar 

  • Venyaminov, S. Y., and Kalnin, N. N., 1991b, Quantitative IR spectrophotometry of peptides compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in a-, ß-and random conformations, Biopolymers 30:1259–1271.

    Google Scholar 

  • Villalain, J., Gomez-Fernandez, J. C., Jackson, M., and Chapman, D., 1989, Fourier-transform infrared spectroscopyic studies on the secondary structure of the Ca++ ATPase of sarcoplasmic reticulum, Biochim. Biophys. Acta 978:305–312.

    PubMed  CAS  Google Scholar 

  • Vincent, S.S., Star, C. J., and Levin, I. W., 1984, Infrared spectroscopic study of the pH-dependent secondary structure of brain clathrin, Biochemistry 23:625–631.

    CAS  Google Scholar 

  • Vorherr, T., James, P., Krebs, J., Enyedi, A., McCormick, D. J., Penniston, J. T., and Carafoli, E., 1990, Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump, Biochemistry 29:355–365.

    PubMed  CAS  Google Scholar 

  • Wantyghem, J., Baron, M.-H., Picquart, M., and Llavialle, F., 1990, Conformational changes of Robinia pseudoacacia lectin related to modifications of the environment: FTIR investigation, Biochemistry 29:6600–6609.

    PubMed  CAS  Google Scholar 

  • Wasacz, F. M., Olinger, J. M., and Jakobsen, R. J., 1987, Fourier-transform infrared studies of proteins using non aqueous solvents. Effects of methanol and ethylene glycol on albumin and immunoglobulin G, Biochemistry 26:1464–1470.

    PubMed  CAS  Google Scholar 

  • Wei, J., Lin, Y-Z, Zhou, J. M., and Tsou, C. L., 1991, FTIR studies of secondary structures of bovine insulin and its derivatives, Biochim. Biophys. Acta 1080:29–33.

    PubMed  CAS  Google Scholar 

  • Wilder, C. L., Friedrich, A. D., Potts, R. O., Daumy, G. O., and Francoeur, M. L., 1992, Secondary structural analysis of two recombinant murine proteins, interluekins la and 1ß: is infrared spectroscopy sufficient to assign structures, Biochemistry 31:27–31.

    PubMed  CAS  Google Scholar 

  • Yang, J. T., Wu, C-S., and Martinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130:208–269.

    PubMed  CAS  Google Scholar 

  • Yang, P. W., Mantsch, H. H., Arrondo, J. L. R., Saint-Girons, I., Guillon, Y, Cohen, G. N., and Bârzu, O., 1987, Fourier-transform infrared investigation of the Escherichia coli methionine aporepressor, Biochemistry 26:2706–2711.

    PubMed  CAS  Google Scholar 

  • Yang, W. J., Griffiths, P. R., Byler, D. M., and Susi, H., 1985, protein conformation by infrared spectroscopy: Resolution enhancement by Fourier self-deconvolution, Applied Spectrosc. 39:282–287.

    CAS  Google Scholar 

  • Yang, W. S., and Griffiths, P. R., 1983, Optimization of parameters for Fourier self-deconvolution. I. Minimization of noise and side-lobes without apodization, Comput. Enhanced Spectrosc. 1:157–165.

    CAS  Google Scholar 

  • Yang, W. S., and Griffiths, P. R., 1984, Optimization of parameters for Fourier self-deconvolution. II. Band multiplits, Comput. Enhanced Spectrosc, 2: 69–74.

    CAS  Google Scholar 

  • Zhang, Y-P., Lewis, R. N., Hodges, R. S., and McElhaney, R. N., 1992a, FTIR spectroscopic studies of the conformation and amide hydrogen exchange of a peptide model of the hydro-phobic transmembrane a-helices of membrane proteins, Biochemistry 31:11572–11578.

    PubMed  CAS  Google Scholar 

  • Zhang, Y-P., Lewis, R. N., Hodges, R. S., and McElhaney, R. N., 1992b, Interaction of a peptide model of a hydrophobic transmembrane a-helical segment of membrane protein with phospha-tidylcholine bilayers: differential scanning calorimetry and FTIR spectroscopic studies, Biochemistry 31:11579–11588.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goormaghtigh, E., Cabiaux, V., Ruysschaert, JM. (1994). Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy. In: Hilderson, H.J., Ralston, G.B. (eds) Physicochemical Methods in the Study of Biomembranes. Subcellular Biochemistry, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1863-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1863-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5757-5

  • Online ISBN: 978-1-4615-1863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics