Advertisement

Linopirdine

A Depolarization-Activated Releaser of Transmitters for Treatment of Dementia
  • S. William Tam
  • Robert Zaczek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 363)

Abstract

Advances in medicine are giving rise to extended life expectancy and thus diseases which usually affect the elderly population will increase in prevalence. Alzheimer’s disease (AD), the leading cause of dementia in the aged population, is devastating to the patients as well as their family members. This is a costly disease to the individuals and to society. Although an enormous effort is being made to understand the cause of this disease and to develop therapies for it, AD remains one of the foremost challenges to medical research today.

Keywords

Senile Dementia Basal Release Cerebral Glucose Metabolism Cholinergic Hypothesis Extended Life Expectancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.G. Gottfries, Alzheimer’s disease and senile dementia: biochemical characteristics and aspects of treatment, Psychopharmacology 86: 245–252 (1985).CrossRefPubMedGoogle Scholar
  2. 2.
    V. Haroutunian, P. Kanof and K.L. Davis, Pharmacological alleviation of cholinergic lesion induced memory deficits in rats, Life Sci 37 945–952 (1985).CrossRefPubMedGoogle Scholar
  3. 3.
    D.J. Hepler, G.L. Wenk, B.L. Cribbs, D.S. Olton and J.T. Coyle, Memory impairments following basal forebrain lesions, Brain Res 346: 8–14 (1985).CrossRefPubMedGoogle Scholar
  4. 4.
    F. Pedata, J. Slavikova, A. Kotas and G. Pepeu, Acetylcholine release from rat cortical slices during postnatal development and aging. Neurobiol Aging 4: 31–35 (1983).CrossRefPubMedGoogle Scholar
  5. 5.
    N.R. Sims, K.L. Marek, D.M. Bowen and A.N. Davison, Production of [14C]acetylcholine and [14C]carbon dioxide from [U-14C]glucose in tissue prisms from aging rat brain, J Neurochem 38: 488–492 (1982).CrossRefPubMedGoogle Scholar
  6. 6.
    P. Davis and A.J.F. Maloney, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 11: 1403 (1976).CrossRefGoogle Scholar
  7. 7.
    E.K. Perry, B.E. Tomlinson, G. Blessed, K. Bergman, P.H. Gibson and R.H. Perry, Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia, Br Med J 2: 1427–1429 (1978).CrossRefGoogle Scholar
  8. 8.
    P. Whitehouse, D. Price, R. Struble, A. Clark, J.T. Coyle and M. DeLong, Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science 215: 237–239 (1982).CrossRefGoogle Scholar
  9. 9.
    J.T. Coyle, D. Price and M. Delong, Alzheimer’s Disease: a disorder of cholinergic innervation, Science 219: 1184–1190 (1983).CrossRefPubMedGoogle Scholar
  10. 10.
    B. Lerer, J. Warner, E. Friedman, G. Vincent and E. Gamzu, Cortical cholinergic impairment and behavioral deficits produced by kainic acid lesions of rat magnocellular basal forebrain, Behav Neurosci 99: 661–677 (1985).CrossRefPubMedGoogle Scholar
  11. 11.
    M. Watson, T.W. Vickroy, H.C. Fibiger, W.R. Roeski and H.I. Yamamura, Effects of bilateral ibotenate-induced lesions of the nucleus basalis magnocellularis upon selective cholinergic biochemical markers in the rat anterior cerebral cortex, Brain Res 346: 387–391 (1985).CrossRefPubMedGoogle Scholar
  12. 12.
    R.M. Ridley, T.K. Murray, J.A. Johnson and H.F. Baker, Learning impairment following lesion of the basal nucleus of Neynert in the marmoset: modification by cholinergic drugs, Brain Res 376: 108–116 (1986).CrossRefPubMedGoogle Scholar
  13. 13.
    D.L. Price, New perspectives on Alzheimer’s disease, Ann Rev Neurosci 9: 489–512 (1986).CrossRefPubMedGoogle Scholar
  14. 14.
    R.J. D’Amato, R.M. Zweig, PJ. Whitehouse, G.L. Wenk, H.S. Singer, R. Mayeux, D.L. Price and S.H. Snyder, Aminergic systems in Alzheimer’s disease and Parkinson’s disease, Ann Neurol 22: 229–236 (1987).CrossRefPubMedGoogle Scholar
  15. 15.
    R.G. Struble, R.E. Powers, M.F. Casanova, C.A. Kitt, E.C. Brown and D.L. Price, Neuropeptidergic systems in plaques of Alzheimer’s Disease, J Neuropathol Exp Neurol 46: 567–584 (1987).CrossRefPubMedGoogle Scholar
  16. 16.
    R.E. Davis, M.E. Emmerling, J.C. Jaen, W.H. Moos and K. Spiegel, Therapeutic intervention in dementia, Crit Rev Neurobiol 7: 41–83 (1993).PubMedGoogle Scholar
  17. 17.
    A.R. Little, P. Levy, P. Chaqui-Kidd and D. Hand, A double-blind placebo controlled trial of high dose lecithin in Alzheimer’s disease, J Neurol Neurosurg Psychiatry 48: 736–742 (1985).CrossRefPubMedGoogle Scholar
  18. 18.
    A. Heyman, D. Schmechmel, W. Wilkinson, H. Rogers, R. Krishnan, D. Holloway, K. Schultz, L. Gwyther and R. Peoples, Failure of long term high-dose lecithin to retard progression of early-onset Alzheimer’s disease, J Neural Transm Suppl 24: 279–283 (1987).PubMedGoogle Scholar
  19. 19.
    K.L. Davis and R.C. Mohs, Enhancement of memory processes in Alzheimer’s Disease with multiple-dose intravenous physostigmine, Am J Psychiatry 139: 1421–1424, 1982.PubMedGoogle Scholar
  20. 20.
    L.J. Thal, P.A. Fuld, D.M. Masur and N.S. Sharpless, Oral physostigmine and lecithin improve memory in Alzheimer’s disease, Ann Neurol 13: 491–496(1983).CrossRefPubMedGoogle Scholar
  21. 21.
    N. Sitaram, Cholinergic hypothesis of human memory: Review of basic and clinical studies, Drug Develop Res 4: 481–488 (1984).CrossRefGoogle Scholar
  22. 22.
    W.K. Summers, L.V. Majovski, G.M. Marsh, K. Tachiki and A. Kling, Oral tetrahydrozminoacridine in long-term treatment of senile dementia, Alzheimer type, N Eng J Med 315: 1241–1245 (1986).CrossRefGoogle Scholar
  23. 23.
    M.M. Mouradian, E. Mohr, J.A. Williams and T.N. Chase, No response to high dose muscarinic agonist therapy in Alzheimer’s disease, Neurol 38: 606–608(1988).CrossRefGoogle Scholar
  24. 24.
    K.L. Davis, E. Hollander, M. Davidson, B.M. Davis, R.C. Mohs and T.B. Horvath, Induction of depression with oxotremorine in patients with Alzheimer’s disease, Am J Psychiatry 144: 468–472 (1987).PubMedGoogle Scholar
  25. 25.
    R.A. Earl, M.J. Myers, A.L. Johnson, R.M. Scribner, M.A. Wuonola, G.A. Boswell, W.W. Wilkerson, V.J. Nickolson, S.W. Tarn, D.R. Britelli, R.J., Chorvat, R. Zaczek, L. Cook, C. Wang, X. Zhang, R. Lan, B. Mi and H. Wenting., Acetylcholine-releasing agents as cognition enhancers, structure-activity relationships of pyridinyl pendant groups on selected core structures, Bioorganic and Medicinal Chemistry Letters 2: 851–854 (1992).CrossRefGoogle Scholar
  26. 26.
    W.M. Bryant, III, and G.F. Huhn, Process for preparing 3, 3-disubstituted indolines, U.S. Patent 4, 806, 651 (1989).Google Scholar
  27. 27.
    V.J. Nickolson, S.W. Tarn, M.J. Myers, and L. Cook, DuP 996 enhances the K+-stimulated release of acetylcholine in ratbrain in vitro and in vivo. FASEB J 3: A931 (1989).Google Scholar
  28. 28.
    V.J. Nickolson, S.W. Tarn, MJ. Meyers and L. Cook, DuP 996 (3, 3 (4-pyrindylmethyl)1-phenylindolin-2-one) enhances the stimulus evoked release of acetylcholine from ratbrain in vitro and in vivo, Drug Dev Res 19: 285–300 (1990).CrossRefGoogle Scholar
  29. 29.
    R. Zaczek, W J. Tinker, A.R. Logue, G.A. Cain, C.A. Teleha and S.W. Tarn, Effects of linopirdine, HP 749, and glycyl-prolyl-glutamate on transmitter release and uptake, Drug Dev Res 29: 203–208 (1993).CrossRefGoogle Scholar
  30. 30.
    J.A. Saydoff and R. Zaczek, Linopirdine enhances KC1 evoked release, but not basal release, of endogenous dopamine in superfused rat striatum, FASEB Abstr 1521 (1993).Google Scholar
  31. 31.
    R. Zaczek, W J. Tinker and S.W. Tarn, Unique properties of norepinephrine release from terminals arising from the locus coeruleus: high potassium sensitivity and lack of linopirdine (DuP 996) enhancement, Neurosci Lett 155: 107–111 (1993).CrossRefPubMedGoogle Scholar
  32. 32.
    M. Marynowski, C. Maciag, C.M. Rominger, S.W. Tarn and R. Zaczek, Effects of linopirdine (DuP 996) on hippocampal extracellular levels of acetylcholine in freely moving animals, Soc Neurosci Abstr 19: 1040 (1993).Google Scholar
  33. 33.
    T.M. Smith, A.D. Ramirez, S.D. Heck, V.J. Jasys, R.A. Volkmann, J.T. Formait and D.R. Liston, In vivo microdialysis and pharmacokinetic studies with DuP 996, Soc Neurosci Abstr 19: 1041 (1993).Google Scholar
  34. 34.
    L. Cook, G.F. Steinfels, K.W. Rohrbach and V.J. Denoble, Cognition enhancement by the acetylcholine releaser DuP 996, Drug Devel Res 19: 301–314 (1990).CrossRefGoogle Scholar
  35. 35.
    J.D. Brioni, P. Curzon, M.J. Buckley, S.P. Arneric and M.W. Decker, Linopirdine (DuP 996) facilitates the retention of avoidance training and improves performance of septal-lesioned rats in the water maze, Pharmacol Biochem Behav 44: 37–43(1993).CrossRefPubMedGoogle Scholar
  36. 36.
    V.J. DeNoble et al., Comparison of DuP 996, with physostigmine, THA and 3, 4-DAP on hypoxia-induced amnesia in rats, Pharmacol Biochem Behav 36: 957–961 (1990).CrossRefPubMedGoogle Scholar
  37. 37.
    M.G. Baxter, K.W. Rohrbach, S.W. Tarn, R. Zaczek and D.S. Olton, Effects of linopirdine and DuP 921 on age-related impairments in memory and on the cholinergic system, Soc Neurosci Abstr 19: 1041 (1993).Google Scholar
  38. 38.
    G.W. Dent, B.L. Rule, S.W. Tarn and E.B. De Souza, Effects of the memory enhancer linopirdine (DuP 996) on cerebral glucose metabolism in native and hypoxia-exposed rats, Brain Res 620: 7–15 (1993).CrossRefPubMedGoogle Scholar
  39. 39.
    G. Dent, S.W. Tarn and R. Grzanna, The memory enhancer linopirdine increases c-fos expression in cerebral cortex of aged rats, Soc Neurosci Abstr 19: 1040(1993).Google Scholar
  40. 40.
    B. Saletu, A. Darragh, P. Salmon and R. Coen, EEG brain mapping in evaluating the time-course of the central action of DuP 996 — a new acetylcholine releasing drug, Br J Clin Pharmacol 28: 1–16 (1989).CrossRefPubMedGoogle Scholar
  41. 41.
    B. Saletu, A. Darragh, H.P. Breuel, W. Herrmann, P. Salmon, R. Coen and P. Anderer, EEG mapping central effects of multiple doses of linopirine — a cognitive enhancer — in healthy elderly male subjects, Human Psychopharmacology 6: 267–275(1991).CrossRefGoogle Scholar
  42. 42.
    R. Zaczek, C. Maciag and W J. Tinker, Effects of linopirdine (DuP 996) on the KC1, veratridine, NMDA and electrically induced release of [3H]acetylcholine from superfused brain slices, Soc Neurosci Abstr 19: 1040 (1993).Google Scholar
  43. 43.
    C.P. Smith, L.R. Brougham and H.M. Vargas, Linopirdine (DuP 996) selectively enhances acetylcholine release by high potassium, but not electrical stimulation, in rat brain slices and guinea pig ileum, Drug Dev Res, in press.Google Scholar
  44. 44.
    B.W. Lampe and B.S. Brown, Electrophysiological effects of DuP 996 on hippocampal CA1 neurons, Soc NeurosciAbstr 17: 632.19 (1991).Google Scholar
  45. 45.
    J.M. Frey, P.A. Murphy and B.S. Brown, DuP 996, a novel neurotransmitter releaser, blocks voltage-activated potassium currents in cultured neocortical neurons, Soc Neurosci Abstr 17: 632.20 (1991).Google Scholar
  46. 46.
    W.J. Tinker, C. Maciag, S.W. Tarn and R. Zaczek, Effects of linopirdine (DuP 996) on KC1 and CaCl2 dose response of potassium evoked release of [3H]acetylcholine from superfused hippocampal slices, Soc NeurosciAbstr 18: 1245 (1992).Google Scholar
  47. 47.
    T. W. Vickroy, Presynaptic cholinergic actions by the putative cognitive enhancing agent DuP 996, J Pharmacol Exp Ther 264 (1993).Google Scholar
  48. 48.
    S.W. Tam, D. Rominger and V.J. Nickolson, Novel receptor site involved in enhancement of stimulus-induced acetylcholine, dopamine and serotonin release, Mol Pharmacol 40: 16–21 (1991).PubMedGoogle Scholar
  49. 49.
    E.B. De Souza, B.L. Rule and S.W. Tarn, [3H]Linopirdine (DuP 996) labels a novel binding site in rat brain involved in the enhancement of stimulus-induced neurotransmitter release: autoradiographic localization studies, Brain Res 582: 335–341 (1992).CrossRefPubMedGoogle Scholar
  50. 50.
    J.A. Saydoff and R. Zaczek, The role ofCa2+ channels, adenosine, and Ca2+ stores on KC1 evoked acetylcholine release and linopirdine (DuP 996) release enhancement in rat hippocampal slices, Soc NeurosciAbstr 19: 423.9 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • S. William Tam
    • 1
  • Robert Zaczek
    • 1
  1. 1.Central Nervous System Diseases ResearchThe DuPont Merck Pharmaceutical CompanyWilmingtonUSA

Personalised recommendations