The Identification of Heterogeneity of 5-HT3 Receptors with [3H]RS-42358-197

  • Erik H. F. Wong
  • Douglas W. Bonhaus
  • Richard M. Eglen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 363)


The diverse pharmacological action of serotonin (5-HT) has been the subject of intense study since its identification in 1936.1 The diversity of actions include activation or inhibition of smooth and cardiac muscle, exocrine and endocrine glands, cells of the hematopoietic and immune systems, as well as central and peripheral neurons.2,3 The results of these investigations have led to the identification of at least 12 different 5-HT receptors based on operational (functional, antagonism, location), transductional (G-protein, ion channel), and structural (gene sequence, chromosomal location) criteria.4 Based on these criteria, 5-HT receptors have been grouped into 5 types, namely 5-HT1 5-HT2, 5-HT3, 5-HT4, and 5-HT5 receptors.5,6


Superior Cervical Ganglion Mouse Cortex Rabbit Ileum Mouse Ileum Saturation Binding Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.J. Peroutka, 5-hydroxytryptamine receptor subtypes, Ann. Rev. Pharmacol. Toxicol 67: 373 (1990).Google Scholar
  2. 2.
    P.M. Whitaker-Azmitia and S.J. Peroutka The neuropharmacology of serotonin. Ann. NY. Acad. Sci. 600: 233 (1990).Google Scholar
  3. 3.
    J.R. Fozard and P.R. Saxena, “Serotonin: Molecular Biology, Receptors and Functional Effects”. Birkauser, Basel (1991).CrossRefGoogle Scholar
  4. 4.
    P.P.A. Humprey, P. Hartig and D. Hoyer, A re-appraisel of 5-HT receptor classification. Proceedings of the 2nd International Symposium on Serotonin: From Cell Biology to Pharmacology and therapeutics, Kluwer, Houston (1992).Google Scholar
  5. 5.
    P.B. Bradley, G. Engel, W. Feniuk, J.R. Fozard, P.P.A. Humphrey, D.N. Middlemiss, E.J. Mylecharane, B.P. Richardson and P.R. Saxena, Proposals for the classification and nomenclature of functional receptors for 5-hydroxytrpyamine, Neuropharmacol. 25: 563 (1986).CrossRefGoogle Scholar
  6. 6.
    D. Clarke and J. Bockaert, 5-HT4 receptor: Current Status, Med. Res. Rev.: in press (1993).Google Scholar
  7. 7.
    V. Derkach, A. Suprenant and R.A. North, 5-HT3 receptors are membrane ion channels, Nature 339: 706 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    A.V. Maricq, A.S. Peterson, A.J. Brake, R.M. Myers and D. Julius, Primary structure and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel, Science 254: 432 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    J.R. Fozard, Neuronal 5-HT3 receptors in the periphery, Neuropharmacol 23: 1473 (1984).CrossRefGoogle Scholar
  10. 10.
    J.R. Fozard, “The peripheral actions of 5-hydroxytryptamine.” Oxford University Press, Oxford (1989).Google Scholar
  11. 11.
    G.J. Kilpatrick, B.J. Jones and M.B. Tyers, Identification and distribution of 5-HT3 receptor in rat brain using radioligand binding, Nature 330: 746(1987).PubMedCrossRefGoogle Scholar
  12. 12.
    N.A. Sharif, E.H.F. Wong, D.N. Loury, E. Stefanich, A.D. Michel, R.M. Eglen and R.L. Whiting, Characterization of 5-HT3 binding sites in NG108-15, NCB-20 neuroblastoma cells and rat cerebral cortex using [3H]-quipazine and [3H]-GR 65630 binding, Br. J. Pharmacol. 102: 919 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Hoyer, and D.H.C. Neijt, Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding, Mol. Pharmacol. 33: 303 (1988).PubMedGoogle Scholar
  14. 14.
    H.C. Neijt, A. Karpf, P. Schoeffter, G. Engel and D. Hoyer,. Characterization of 5-HT3 recognition sites in membranes of NG 108-15 neuroblastoma-glioma cells with [3H] ICS 205, 930, Naunyn-Schmiedeberg’s Arch. Pharmacol. 33: 493 (1988).Google Scholar
  15. 15.
    K.J. Watling, S. Aspley, S., Swain, and Saunders J. (1988) [3H] Quaternised ICS 205-930 labels 5-HT3 receptor binding sites in rat brain, Eur. J. Pharmacol. 149, 397–398.PubMedCrossRefGoogle Scholar
  16. 16.
    R.M. McKernan, N.P. Gillard, K. Quirk, C.O. Kneen, G.I. Stevenson, C.J. Swain, and C.I. Ragan, Purification of the 5-hydroxytryptamine 5-HT3 receptor from NCB20 cells, J. Biol. Chem. 265: 13572 (1990).PubMedGoogle Scholar
  17. 17.
    D.M. Milburn and S.J. Peroutka, Characterization of [3H]quipazine binding to 5-hydroxytryptamine3 receptors in rat brain membranes, J. Neurochem. 52: 1787 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Pinkus, N.S. Sarbin, D.S. Barefoot and J.C. Gordon, Association of [3H]zacopride with 5-HT3 binding sites, Eur. J. Pharmacol. 168: 355(1989).PubMedCrossRefGoogle Scholar
  19. 19.
    J.M. Barnes, N.M. Barnes, B. Costall, J.W. Ironside and R.J. Naylor, Identification and characterization of 5-hydroxytryptamine3 recognition sites in human brain tissue, J. Neurochem. 53: 1787 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    D.R. Nelson and D.R. Thomas, [3H]-BRL43694 (Granisetron), a specific ligand for 5-HT3 binding sites in rat brain cortical membranes, Biochem. Pharmacol. 38: 1693 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    D.T. Wong, D.W. Robertson and L.R. Reid, Specific [3H]LY 278584 binding to 5-HT3 recognition sites in rat cerebral cortex, Eur. J. Pharmacol. 166: 107 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    A.M. Laporte, T. Koscielniak, M. Ponchant, D. Verge, M. Hamon and H. Gozlan, Quantitative autoradiog-raphic mapping of 5-HT3 receptors in the rat CNS using [125I]iodo-zacopride and [3H]zacopride as radioligands, Synapse 10: 271 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    E.H.F. Wong, I. Wu, R.M. Eglen and R.L. Whiting, Labeling of species variants of 5-hydroxytryptamine3 (5-HT3) receptors by a novel 5-HT3 receptor ligand [3H]RS-42358-197, Br. J. Pharmacol. 105: 33P (1992).CrossRefGoogle Scholar
  24. 24.
    B.P. Richardson and G. Engel G. The pharmacology and function of 5-HT3 receptors, Trends Neurosci. 7: 424 (1986).CrossRefGoogle Scholar
  25. 25.
    J.A. Peters, J.J. Lambert and H.M. Malone, Physiological and pharmacological aspects of 5-HT3 receptor function. In “Aspects of Synaptic Transmission: LTP, Galanin, Opioid, Autonomie, 5-HT” (ed. Stone T.W.), pp. 283, Taylor & Francis, London (1991).Google Scholar
  26. 26.
    M.S. Aapro, 5-HT3 receptor antagonists: An overview of their present status and future potential in cancer therapy-induced emesis, Drug 42: 551 (1991).CrossRefGoogle Scholar
  27. 27.
    B. Costall, R.J. Naylor and M.B. Tyers, The psychopharmacology of 5-HT3 receptors, Pharmacol. Ther. 47: 181 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    M.D. Tricklebank, Interactions between dopamine and 5-HT3 receptors suggest new treatments for psychosis and drug addiction, Trends Pharmacol. Sci. 10: 127(1989).PubMedCrossRefGoogle Scholar
  29. 29.
    E.H.F. Wong, D.W. Bonhaus, E. Stefanich, and R.M. Eglen, Labeling of 5-hydroxytryptamine3 receptors with a novel 5-HT3 receptor ligand, [3H]RS-42358-197, J. Neurochem. 60: 921 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    R.M. Eglen, C. Lee, W.L. Smith, L.G. Johnson, R.L. Whiting and S.S. Hedge, RS-42358-197, a novel and potent 5-HT3 receptor antagonist, in vitro and in vivo, J. Pharmacol. Exp. Ther., in press (1993).Google Scholar
  31. 31.
    B. Costall, A.M. Domeney, M.E. Kelly, D.M. Tomkurs, R.J. Naylor, E.H.F. Wong, W.L. Smith, R.L. Whiting and R.M. Eglen, The effect of the 5-HT3 receptor antagonist, RS-42358-197, in animal models of anxiety, Eur. J. Pharmacol. 234: 91 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    Y.C. Cheng and W.H. Prusoff, Relationship between inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction, Biochem. Pharmacol. 92: 881 (1973).Google Scholar
  33. 33.
    J.O. Marcusson, M Bergstrom, K. Eriksson and S.B. Ross, Characterization of [3H]paroxetine binding in rat brain, J. Neurochem. 50: 1783 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Butler, C.J. Elswood, J. Burridge, SJ. Ireland, K.T. Bunce, G.J. Kilpatrick and M.B. Tyers, The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues, Br. J. Pharmacol. 101: 591(1990).PubMedCrossRefGoogle Scholar
  35. 35.
    R.M. Eglen, S.R. Swank, L.K.M. Walsh and R.L. Whiting, Characterization of 5-HT3 and’ atypical’ 5-HT receptors mediating guinea-pig ileal contractions in vitro., Br. J. Pharmacol. 101: 513 (1990).Google Scholar
  36. 36.
    N.R. Newberry, S.H. Cheshire and M.J. Gilbert, Evidence that 5-HT3 receptors of the rat, mouse and guinea pig superior cervical ganglion may be different. Brit. J. Pharmacol. 102: 615 (1991).CrossRefGoogle Scholar
  37. 37.
    H.M. Malone, J.A. Peters. and J.J. Lambert, Physiological and pharmacological properties of 5-HT3 receptors-a patch clamp-study, Neuropeptide 19: 25(1991).CrossRefGoogle Scholar
  38. 38.
    J.R. Fozard, 5-HT3 receptors in the context of the multiplicity of 5-HT receptors. In “Central and Peripheral 5-HT3 receptors”, ed. Hamon, M., Academic Press Ltd., London (1992).Google Scholar
  39. 39.
    G.J. Kilpatrick, B.J. Jones and MB. Tyers, 1-(m-chlorophenyl)-biguanide, a potent high affinity 5-HT3 receptor agonist, Eur. J. Pharmacol. 182: 193 (1990).PubMedCrossRefGoogle Scholar
  40. 40.
    G.J. Kilpatrick and M.B. Tyers, Inter-species variants of the 5-HT3 receptor, Biochem. Soc. Trans. 20: 118 (1992).PubMedGoogle Scholar
  41. 41.
    J.A. Peters, H.M. Malone and J.J. Lambert, Characterization of 5-HT3 receptor mediated electrical responses in nodose ganglion neurones and clonal neuroblastoma cells maintained in culture. In “Serotonin: Molecular Biology, Receptors and Functional Effects” (ed. Fozard, J.R. and Saxena, P.R.), pp. 84–94. Birkhauser, Basel (1991).CrossRefGoogle Scholar
  42. 42.
    K. Miyata, T. Kamato, A. Nishida, H. Ito, Y. Katsuyama, A. Iwai, H. Yuli, M. Yamano, R. Tsutsumi, M. Ohta, M. Takeda and K. Honda, Pharmacological profile of (R)-5-[(1-methyl-3-indolyl)carbonyl]-4, 5, 6, 7-tetrahydro-1H-benzimida-zole hydrochloride (YM060), a potent and selective 5-hydroxytryptamine3 receptor antagonist, and its enantiomer in the isolated tissue, J. Pharmacol. Exp. Ther. 259: 15 (1991).PubMedGoogle Scholar
  43. 43.
    J.M. Barnes, N.M. Barnes, B. Costall, S.M. Jagger, R.J. Naylor and D.W. Robertson, Agonist interactions with 5-HT3 receptor recognition sites in the rat entorhinal cortex labeled by structurally diverse radioligands, Br. J. Pharmacol. 105: 500 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    D.W. Bonhaus, R.M. Eglen and E.H.F. Wong, Allosteric interactions of agonists and antagonists at 5-hydroxytryptamine (5-HT3) receptors, Society for Neuroscience Abstracts 18: 1518 (1992).Google Scholar
  45. 45.
    E.H.F. Wong, J. Lee, D.N. Loury, R.M. Eglen and R.L. Whiting, Heterogeneity of 5-HT3 receptors as labeled by [3H]GR65630 and [3H]quipazine, J. Neurochem. 57: S136 (1991).CrossRefGoogle Scholar
  46. 46.
    L. Cicin-Sain and P. Jenner, Localization and characterization of 5-HT3 receptors in the forebrain of the rat identified by the specific binding of [3H]GR 65630, Neurosci. Res. Comm. 10: 17 (1992).Google Scholar
  47. 47.
    N.A. Sharif, J.L. Nunes, Z.P. To, E.H.F. Wong, R.M. Eglen and R.L. Whiting, Quantitative autoradiographic distribution of 5-HT3 receptors in rat, ferret and dog brain, Br. J. Pharmacol. 102: 142P (1991).CrossRefGoogle Scholar
  48. 48.
    G.J. Kilpatrick, B.J. Jonesand M.B. Tyers, Binding of the 5-HT3 ligand, [3H] GR65630, to rat areapostrema, vagus nerve and the brains of several species, Eur. J. Pharmacol. 159: 157 (1989).PubMedCrossRefGoogle Scholar
  49. 49.
    S.C. Lummis, G.J. Kilpatrick and I.L. MArtin, Charaacterization of 5-HT3 receptors in intact N1E-115 neuroblastoma cells, Eur. J. Pharmacol. 189: 223.Google Scholar
  50. 50.
    A.W. Schmidt, S.D. Hurt and S.J. Peroutka, [3H]quipazine degradation products label 5-HT uptake sites, Eur. J. Pharmacol. 171: 141 (1989).PubMedCrossRefGoogle Scholar
  51. 51.
    J.O. Marcusson, M. Bergstrom, K. Eriksson and S.B. Ross, Characterization of [3H]paroxetine binding in rat brain, J. Neurochem. 50: 1783 (1988).PubMedCrossRefGoogle Scholar
  52. 52.
    E.H.F. Wong, D.W. Bonhaus, J.A. Lee, I. Wu, D.N. Loury and R.M. Eglen, Different densities of 5-HT3 receptors are labeled by [3H]quipazine, [3H]GR 65630 and [3H]granisetron, Neuropharmacol. 32: in press (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Erik H. F. Wong
    • 1
  • Douglas W. Bonhaus
    • 1
  • Richard M. Eglen
    • 1
  1. 1.Department of Neurosciences Institute of PharmacologySyntex Discovery ResearchUSA

Personalised recommendations