Advertisement

Perspective of Neurochemistry in Neurological Disorders

  • Lily C. Tang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 363)

Abstract

Degeneration of basal forebrain cholinergic neurons have been considered as one of the earliest and prominent neuropathological features of diseases of the human brain that give rise to loss of memory and dementia including Parkinson’s and Alzheimer’s diseases, and other neurological disorders. Genetic factors, aluminum or other toxic factors, immunological disturbances, disturb glucose metabolism, deficiency of essential nutrients, and stress are some of the etiology. The pathologenesis of the disorder involves not only the structural changes but also neurochemical disturbances and neuroendocrine dysfunction.

Keywords

Botulinum Toxin Senile Dementia Large Neutral Amino Acid Basal Forebrain Cholinergic Neuron Aged Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Blascho, H: (1959) Pharmacol. Rev. 11: 307–316.Google Scholar
  2. 2.
    Schuman, HJ: (1960) In: adrenergic Mechanisms. Ed. by J.R. Vane, R.E.W. Wolstenholme and M. O’comer. J. and A. Churchill Lit. London.Google Scholar
  3. 3.
    Montagu, KA: (1957) Nature, London 180: 244–245.CrossRefGoogle Scholar
  4. 4.
    Weil-Malherbk, H, Bone, A: Nature, London 180: 1050-1051.Google Scholar
  5. 5.
    Carlsson, A, Lindquist, M, Magnusson, T, Waldeck, B: (1958) Science 127: 471.PubMedCrossRefGoogle Scholar
  6. 6.
    Bertler, A, Rosengren, E: (1959)Experimentia 15: 10–11.CrossRefGoogle Scholar
  7. 7.
    Carlsson, A: (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. rev. 11: 490–493.PubMedGoogle Scholar
  8. 8.
    Ehringer, H, Hornykiewicz, O: (1960) Klin. Wochenschr. 38: 1236–1239.PubMedCrossRefGoogle Scholar
  9. 9.
    Poirier, LJ, Sourkes, TL: (1965) Influence of the substantia nigra on the catecholamine content of the striatum. Brain 88: 181–192.PubMedCrossRefGoogle Scholar
  10. 10.
    Sano, I, Gamo, T, Kakimoto, Y, Taniguchi, K, Takesada, M and Nishinuma, K: biochem. biophys. Acta 32: 586-587.Google Scholar
  11. 11.
    Hornykiewicz, O: (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 18: 925–964.PubMedGoogle Scholar
  12. 12.
    Delay, J, Dinker, P: (1958) In Handbook of clinical Neurology, ed. P.J. Vinkers, G.W. Bryun, 6: 248–266. Amsterdam & North Holland.Google Scholar
  13. 13.
    Axelrod, J, Kopin, IJ, and Mann, JD: (1959) 3-methoxy-4 hudroxyphenylglycol sulfate, a new metabolite of epinephrine and norepinephrine. biochim. biophys. Acta 36: 576–577.PubMedCrossRefGoogle Scholar
  14. 16.
    Tang, LC: (1984) A presonal and scientific biography of Dr. Cotzias C. Cotaizs. Neurotoxicology 5: 5–12.PubMedGoogle Scholar
  15. 17.
    Cotzias, GC, Tang, LC, Ginos, JZ, Nicholson, AR, Jr. and Papavasiliou, PS.: (1971) Block of cerebral actions of L-dopa with methyl receptor substances. Nature 231: 533–535.PubMedCrossRefGoogle Scholar
  16. 18.
    Cotzias, GC, Papavasiliou, PS and Gellene, R: (1969) Modification of parkinsonism — Chronic treatment with L-dopa. N. Engl. J. Med. 280: 337–345.PubMedCrossRefGoogle Scholar
  17. 19.
    Papavasliou, PS, Cotzias, GC, Duby, SE, Steck, AJ, Fehling, C. and Bell, MA: (1972) Levodopa in parkinsonism: Potentiation of central effects with a peripheral inhibitor. N. Engl. J. Med. 286: 8–14.209.CrossRefGoogle Scholar
  18. 20.
    Hutton, JT, Morris, JL, Bush, DF, Smith, ME, Liss, CL, Reines, S: (1989) Multicenter controlled study of sinemet CR vs. Sinemet (25/100) in advanced Parkinson’s disease patients. Neurology 39 (Suppl, 2): 67–72.PubMedGoogle Scholar
  19. 21.
    Jankovic, J, Schwartz, K, Vander Linden, C: (1989) Comparison of sinemet CR4 and standard Sinemet: double blind and long-term open trial in parkinsoian patients with flutuations. Mov. Disord. 4: 303–309.PubMedCrossRefGoogle Scholar
  20. 22.
    Olanow, CW, Nakano, K, Nausieda, P, Tetrud, JA, Manyam, B, et al: (1991) An open multicenter trial of Sinemet CR in levodopa-naive Parkinson’s disease patients. Clin. Neuropharmacol. 14: 235–240.PubMedCrossRefGoogle Scholar
  21. 23.
    Sage, JI, Mark, MH: (1992) The rationale fror continuous dopaminergic stimulation in patients with Parkinson’s disease. Neurology 42 (Suppl. 1): 23–28.PubMedGoogle Scholar
  22. 24.
    Chia, LG and Liu, LH: (1992) Parkinson’s disease in Taiwan: an analysis of 215 patients. Neuroepidemiology 11: 113–120.PubMedCrossRefGoogle Scholar
  23. 25.
    Barbeau, A: (1973) Treatment of Parkinson’s disease with L-dopa and Ro 4-4602: Review and present status. Adv. in Neurology 2: 173–198.Google Scholar
  24. 26.
    Nutt, JG: (1989) Levodopa-induced duskinesia: review, observations, and speculations. Neurology 40: 340–345.CrossRefGoogle Scholar
  25. 27.
    Caraceni, T, Scigliano, G, Musicco, M: (1991) the coccurrence of motor fluctuations in Parkinsonian patients treated longterm with levodopa. Neurology 41: 380–384.PubMedCrossRefGoogle Scholar
  26. 28.
    Cedarbaum, JM, Gandy, SE, McDowell, FH: (1991) “early” initiation of levodopa treatment does not promote the development of motor response fluctuations, dyskinesias, or dementia in Parkinson’s disease. Neurology 41: 622–629.PubMedCrossRefGoogle Scholar
  27. 29.
    Jankovic, J: (1985) Long-term use of dopamine agonists in Parkinson’s disease. Clin. Neuropharmacol. 8: 131–140.PubMedCrossRefGoogle Scholar
  28. 30.
    Nutt, JG, Fellman, JH: (1984) Pharmacokinetics of levodopa. Clin. Neuropharmacol. 7: 35–49.PubMedCrossRefGoogle Scholar
  29. 31.
    Laihinen, A, Rinne, UK, Suchy, I: (1992) Comparison of Lisuride and bromocriptine in the treatment of advanced Parkinson’s disease. Acta Neurol Scand (Denmark) 86: 593–595.CrossRefGoogle Scholar
  30. 32.
    Duby, SE, Cotzias, GC, Papavasiliou, PS, and Lawrence, WH: (1972) Injected apomorphine and oral levodopa in parkinsonism. Achives of Neurology 27: 474–480.CrossRefGoogle Scholar
  31. 33.
    Cotzias, GC, Tang, LC, and Ginos, JZ: (1974) Proc. Natl Acad. Sci (USA) 71: 2715–2719.CrossRefGoogle Scholar
  32. 34.
    Parkinson Study Group: (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N. Engl. J. Med. 321: 1364–1371.CrossRefGoogle Scholar
  33. 35.
    The Parkinson Group: (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N. Engl. J. Med. 328: 176–183.CrossRefGoogle Scholar
  34. 36.
    Olanow, CW: (1993) MAO-B unhibitors in Parkinson’s disease. Adv. Neuro.60: 666–671.Google Scholar
  35. 37.
    Limousin, P, Pollak, P, Gervason-Tournier, CL, Hommel, M, Perret, JE: (1993) Ro 40-7592, a COMT inhibitor, plus levodopa in Parkinson’s disease [letter].Lancet 341(8860): 1605.PubMedCrossRefGoogle Scholar
  36. 38.
    Cooper, JA, Sagar, HJ, Doherty, SM, Jordan, N, Tidsawell, P, Sullivan, EV: (1992) Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. Afollow-up study of untreated patients. Brain (England) 115: 1701–1725.Google Scholar
  37. 39.
    Sandyk, R: (1992) L-trytophan in neuropsychiatric disorders: a review. Int. J. Neurosci. (England) 67: 127–144.CrossRefGoogle Scholar
  38. 40.
    Van Spaendonck, KP, Berger, HJ, Horstink, MW, Buytenhyijs, EL, Cools, WR: (1993) Imparted cognitive hifting in parkinsonian patients on anticholinergic therapy. Neuropsychologia 31: 407–411.PubMedCrossRefGoogle Scholar
  39. 41.
    Factor, SA, Brown, D: (1992) Clozapine prevents recrurrence of psychosis in Parkinson’s disease. Mov. disord. 7: 125–131.PubMedCrossRefGoogle Scholar
  40. 42.
    Hesselink, JM: (1993) Serotonin and Parkinson’s disease [letter] Am J Psychiatry 150: 843–844.PubMedGoogle Scholar
  41. 40.
    Van Spaendonck, KP, Berger, HJ, Horstink, MW, Buytenhyijs, EL, Cools, WR: (1993) Imparied cognitive hifting in parkinsonian patients on anticholinergic therapy. Neuropsychologia31: 407–411.PubMedCrossRefGoogle Scholar
  42. 41.
    Factor, SA, Brown, D: (1992) Clozapine prevents recrurrence of psychosis in Parkinson’s disease. Mov. disord. 7: 125–131.PubMedCrossRefGoogle Scholar
  43. 42.
    Hesselink, JM: (1993) Serotonin and Parkinson’s disease [letter] Am J Psychiatry 150: 843–844.PubMedGoogle Scholar
  44. 43.
    FritzGerald, PM, Jankovic, J: (1990) Nondopaminergic therapy in Parkinson’s disease. In therapy of Parkinson’s disease, ed. W.C. Koller, G. Paulson. New York/Basel: Marcel Dekker pp.583.Google Scholar
  45. 44.
    Greenamyre, JT: (1993) Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson’s disease. J. Neural. Transm. Gen. Sect. 91: 255–269.PubMedCrossRefGoogle Scholar
  46. 45.
    Zipp, F, Baas, H, Fisher, PA: (1993) Lamotrigine — antiparkinsonian activity by blockade of glutamate release? J. Neural. Transm. Park. Dis. Dement. Sect. 5: 67–75.PubMedCrossRefGoogle Scholar
  47. 46.
    Kornhuber, J, Riederer, P: (1993) N-methyl-D-aspartate (NMDA) antagonists in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 56: 427.PubMedCrossRefGoogle Scholar
  48. 47.
    Langston, JW, Ballard, PA, Tetrud, JW, Irwin, I: (1983) Chronic parkinsonism in humans due to a product of meperidine analogue synthesis. Science 219: 979–980.PubMedCrossRefGoogle Scholar
  49. 48.
    Burns, RS, Chiueh, CC, Markey, SP, Ebert, MH, Jacobwitz, DM and Kopin, IJ: (1983) A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1, 2, 3, 6-tetrahydopyridine. Proc. Natl. Acad. Sci. USA 80: 4546–4550.PubMedCrossRefGoogle Scholar
  50. 49.
    Tang, LC and Cotzias, GC: (1976) Modification of the actions of some neuroactive drugs by growth hormone. Archives of Neurology 33: 131–134.PubMedCrossRefGoogle Scholar
  51. 50.
    Cotzias, GC, Tang, Lc and Mena, I: (1973) Effects of inhibitors and stimualtion of protein synthesis on the cerebral actions of levodopa. In: Neuroscience Research vol 5, ed. by I.J. Kopin and S. Ehrenpreis. Academic Press, New York. pp. 97–105.Google Scholar
  52. 51.
    Hirata, H, Asanuma, M, Kondo, Y, Ogawa, N: (1992) Influence of protein-restricted diet on motor response fluctuations in Parkinson’s disease. Rinsho shinkeigaku 32: 973–978.PubMedGoogle Scholar
  53. 52.
    Weiss, R: (1993) Promising protein for Parkinson’s [news; comment] Science 260: 1072–1073.PubMedCrossRefGoogle Scholar
  54. 53.
    Parkinson Study Group. (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease, N. Engl J Med 321: 1364–1371.CrossRefGoogle Scholar
  55. 54.
    Laine, E, Blond, S, Caparros-Lefebvre, D: (1992) Novel possibilities for treatment of parkinsonian tremor and other abnormal movements by stimulation of the nucleus ventralis intermedius thalami. Bull Acad Natl Med (France) 176: 1147–1156.Google Scholar
  56. 55.
    Nishimura, H, Hirai, T: (1993) A new operational method of functional neurosurgery combining micro-recording and MRI stereotaxy for the treatment of Parkinson’s disease. No To Shinkei (Japan) 45: 144–155.Google Scholar
  57. 56.
    Emerich, DF, Winn, SR, Christenson, L., Palmatier, MA, Gentile, FT, Sanberg, PR: (1992) A novel approach to neural transplantation in Parkinson’s disease: use of polymer-encapsulated cell therapy. Neurosci Biobehav Rev 16: 437–447.PubMedCrossRefGoogle Scholar
  58. 57.
    Diedrich, N, Goetz, CG, Stebbins, GT et al: (1992) Blinded evaluation confirm lont-term asymmetric effect of unilateral thalamotomy or subthalamotomy on tremor in Parkinson’s disease. Neurology 42: 1311–1314.CrossRefGoogle Scholar
  59. 58.
    Bergman, H, Wichman, T, Delong, MR: (1990) Reversal of experimental parkinsonism by lesion of the subthalamic nucleus, Science 249: 1436–1438.PubMedCrossRefGoogle Scholar
  60. 59.
    Laitinen, LV, Bergenheim, AT, Hariz, MI: (1992) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J. Neurosurg. 76: 53–61.PubMedCrossRefGoogle Scholar
  61. 60.
    Goetz, CG, Stebbins, GT, Klawans, HL, Koller, WC, Grossman, TG et al: (1991) United Parkinson Foundation Neurotransplantation Registry on adrenal medullary treansplants: presurgical and 1-and 2-year follow up. Neurology 41: 1719–1722.PubMedCrossRefGoogle Scholar
  62. 61.
    Zhang, WC: (1992) Long-term effects of intracerebral implantation of adrenal medulla in the treatment of Parkinsonism. Chung Hua Wai Ko Tsa Chin (China) 30: 355–357.Google Scholar
  63. 62.
    Widner, H, Rehncrona, S: (1993) Transplantation and surgical treatment of parkinsonian syndromes. Curr. Opin. Neurol. Neurosurg. 6: 344–349.PubMedGoogle Scholar
  64. 63.
    Anglade, P, Hirsch, EC, Brandel, JP, Javoy-Agid, F, Duyckaerts, C, Hauw, JJ, Agrid, Y: (1993) Adrenal transplant, dopaminergic neurons, and Parkinson’s disease [letter] Ann. Neurol. 33: 662–663.Google Scholar
  65. 66.
    Freed, CR, Breeze, RE, Rosenberg, NL, et al.: (1992) Survival of implanted fetal dopamine cells and neurological improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327: 1549–1555.PubMedCrossRefGoogle Scholar
  66. 67.
    Gage, FH: (1993) Parkinson’s disease. Fetal implants put to the test [new]. Nature: 361: 405–406.Google Scholar
  67. 68.
    Freed, CR, Breeze, RE, Rosenberg, NL, Schneck, SA: (1993) Embryonic dopamine cell implants as a treatment for the second phase of Parkinson’s disease. Replacing failed nerve terminals. Adv. Neurol. 60: 721–728.Google Scholar
  68. 69.
    Walters, AM, Clarke, DJ, Bradford, HF, Stern, GM: (1992) The properties of culture fetal human and rat brain tissue and its use as grafts for the relief of the Parkinsonian syndrome. Neurochem. Res. 17: 893–900.PubMedCrossRefGoogle Scholar
  69. 70.
    Iacono, RP, Tang, ZS, Mazziotta, JC, Grafton, S, Doehn, M: (1992) Bilateral fetal grafts for Parkinson’s disease: 22 months’ results. Stereotact. funct. Neurosurgery 58: 84–87.CrossRefGoogle Scholar
  70. 71.
    Landau, WM: (1993) Clinical neuromythology X. Faithful fashion: survival status of the brain transplant cure for parkinsonism. Neurology 43: 644–649.Google Scholar
  71. 72.
    Hitchcock, ER: (1993) Fetal transplant update [letter].Science 259: 442–443.PubMedGoogle Scholar
  72. 73.
    Pezzoli, G, Zecchinelli, A, Ricciardi, S, Burke, RE, Fahn, S, et al.: (1991).Intraventricular infusion of epidermal growth factor restores dopaminergic pathway in hemiparkinsonian rats. Mov. Disord. 6: 281–287.PubMedCrossRefGoogle Scholar
  73. 74.
    Scheider, JS, Pope, A. Simpson, K, Taggert, J, Smith, MC, DeStephano, L: (1992) Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science 256: 843–846.CrossRefGoogle Scholar
  74. 75.
    Jiao, S, Gurevich, V, Wolff, JA: (1993) Lont-term correlation of rat model of Parkinson’s disease by gene therapy. Nature 362: 450–453.PubMedCrossRefGoogle Scholar
  75. 76.
    Mouton, PR, Meyer, EM & Arendash, GW: (1989) Intracortical AF64A: memory impairments and recovery from cholinergic hypofunction. Pharmacol Biochem. Behav. 32: 841–848.PubMedCrossRefGoogle Scholar
  76. 77.
    Bowen, DM, Smith, CB, White, P & Davison, AN: (1976) Beurotransmitter-related enzyme and indices of hypoxia in senile dementia and other abiotrophies. Brain: 459-496.Google Scholar
  77. 78.
    Perry, EK, Perry, RH, Blessed, G, Tomlinson, SE: (1977) Necropsy evidence of central cholinergic deficits in senile dementia [letter].Lancet 1: 189.PubMedCrossRefGoogle Scholar
  78. 79.
    Coyle, JT, Price, DL, Delong, MR: (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190.PubMedCrossRefGoogle Scholar
  79. 80.
    Johnston, MV, Grzanna, R, Coyle, JT: (1979) Methylazoxymethanol treatment of fetal rats results in abnormally dense noradrenergic innervation of neocortex. Science 203: 369–371.PubMedCrossRefGoogle Scholar
  80. 81.
    Sims, NR, Bowen, DM et al: (1983) Presynaptic cholinergic dysfunction in patients with dementia. J. Neurochem. 40: 503–539.PubMedCrossRefGoogle Scholar
  81. 82.
    Sims, NR, Bowen, DM, Smith, CC et al: (1980)Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer’s disease. Lancet: 1: 333–335.PubMedCrossRefGoogle Scholar
  82. 83.
    Lippa, AS, Pelham, RW et al: (1980) Brain cholinergic dysfunction and memory in aged rats. Neurobiol. Aging 1: 13–19.PubMedCrossRefGoogle Scholar
  83. 84.
    Gibson, GE, Peterson, C, Jenden, DJ: (1981) Brain acetylcholine synthesis declines with senescence. Science 213: 674–676.PubMedCrossRefGoogle Scholar
  84. 85.
    Mesulam, MM, Mufson, EJ, Levet, AI, Wainer, BH: (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp. Neurol. 214: 170–197.PubMedCrossRefGoogle Scholar
  85. 86.
    Mastropaolo, J, Nadi, NS et al: Proc. Natl Acad Sci USA 85: 9841-9845.Google Scholar
  86. 87.
    Beal, MF, Clevens, RA, et al: (1988) J Neurochem. 51: 1935-1941.Google Scholar
  87. 88.
    Bartus, RT, Dean, RL, Pontecorvo, MJ, Flicker, C: (1985) The cholinergic hypothesis: a historical overview, current perspective, and future direction. Ann N.Y. Acad. Sci. 444: 332–358.PubMedCrossRefGoogle Scholar
  88. 89.
    Cohen, EL. & Wurtman, RJ: (1975) Brain acetylcholine: increase after systemic choline administration. Life Sci 16: 1095–1102.PubMedCrossRefGoogle Scholar
  89. 90.
    Haubrich, DR, Wang, PF, Clody, DE, Wedeking, PW: (1975) Increase in rat brain acetylcholine induced by choline or deanol. Life Sci 17: 975–980.PubMedCrossRefGoogle Scholar
  90. 91.
    Wurtman, RJ, Fernstrom, JD: (1976) control of brain neurotransmitter synthesis by precursor availability and nutritional state. Biochem Pharmacol 25: 1691–1696.PubMedCrossRefGoogle Scholar
  91. 92.
    Hirsch, MJ, Wurtman, RJ: (1978) Lecithin consumption increases acetylcholine concentrations in rat brain and adrenal gland. Science 202: 223–235.PubMedCrossRefGoogle Scholar
  92. 93.
    Bartus, RJ, Dean, RL et al: (1982) Science 217: 408–417.PubMedCrossRefGoogle Scholar
  93. 94.
    Bartus, RJ, Dean, RL & Beer, B: In Nutrition in Gerontology. J.M. Ordy, D. Harman & R. Alfin-Slater, Eds. Raven Press, N.Y. 1984.Google Scholar
  94. 95.
    Drachman, DA: In Psychopharmacology: A Generation of Progress. M.A. Lipton, A. DiMascio & K.F. Killan, Eds. Raven Press, N.Y., 1978.Google Scholar
  95. 96.
    Drachman, DA, Sahakian, BJ: (1980) Memory and cognitive function in the elderly. A preliminary trial of physostigmine. Arch Neurol 37: 674–675.Google Scholar
  96. 97.
    Smith, CM, Swash, M: (1979) Physostigmine in Alzheimer’s disease [letter] Lancet 1: 42.PubMedCrossRefGoogle Scholar
  97. 98.
    Goodnick, P, Gershon, S: (1984) Chemotherapy of cognitive disorders in geriatric subjects. J Clin Psychiatry 45: 196–209.PubMedGoogle Scholar
  98. 99.
    Bartus, RT: (1979) Four stimulants of the central nervous system: effects on short-term memory in young versus aged monkeys. J Am Geriatr Soc 27: 289–297.PubMedGoogle Scholar
  99. 100.
    Davis, KL, Mohs, RC: (1982) Enhancement of memory processes in Alzheimer’s disease with multiple-dose intravenous physostigmine. Am J Psychiatry 139: 1421–1424.PubMedGoogle Scholar
  100. 101.
    Davis, KL, Mohs, RC, Tinklenberg, JR: (1978) Physostigmine: improvement of long-term memory processes in normal humans. Science 201: 272–274.PubMedCrossRefGoogle Scholar
  101. 102.
    Christie, JE: In Alzheimer’s Disease: A Report of Progress in Research. S. Corkin, K.L. Davis, J.H. Growdon, E. Usdin & R.J. Wurtman, Eds. Raven Press. N.Y., 1982.Google Scholar
  102. 103.
    Thal, LJ, Fuld, PA, Masur, DM, Sharpless, NS: (1983) Oral physostigmine and lecithin improve memory in Alzheimer’s disease. Ann Neurol 13: 491–496.PubMedCrossRefGoogle Scholar
  103. 104.
    Mandel, RJ, Chen, AD, Connor, DJ, Thal, LJ: (1989) Continueous physostigmine infusion in rats with excitotoxic lessions of the nucleus basalis magnocellularis: effects on performance in the water maze task and cortical cholinergic markers. J pharmacol Exp ther251: 612–619.Google Scholar
  104. 105.
    Bartus, RT, Dean, RL, Goas JA, Lippa, AS: (1980) Age-related changes in passive avoidance retention: modulation with dietary choline. Science 209: 301–303.PubMedCrossRefGoogle Scholar
  105. 106.
    Costall, B, Barnes, JM et al: (1990) Pharmacopsychiatry 23 suppl 2: 85–88.PubMedCrossRefGoogle Scholar
  106. 107.
    Bond, NW, Walton, J, Pruss, J: (1989) Restoration of memory following septo-hippocampal grafts: a possible treatment for Alzheimer’s disease. Biol Psychol28: 67078.Google Scholar
  107. 108.
    Adolffson, R, Gottfries, CG et al: In Alzheimer’s Disease: Senile Dementia and Related Disorders. R. Katzman, R.D. Terry & K.L. Bick, Eds. Raven Press, N.Y. 1978.Google Scholar
  108. 109.
    Arai, H, Kosaka, K, Iizuka, R: (1984) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J. Neurochem43: 388–393.PubMedCrossRefGoogle Scholar
  109. 110.
    Cross, AJ, Crow, TJ, Johnson, JA, Joseph, MH et al: (1983) Monoamine metabolism in senile dementia of alzheimer type. J. Neurol Sci 60: 383–392.PubMedCrossRefGoogle Scholar
  110. 111.
    Owen, F, Baker, HF et al: (1981) Effect of cheronic amphetamine administration on central dopaminergic mechanisms in the vervet. Psychopharmacology 74: 213–216.PubMedCrossRefGoogle Scholar
  111. 112.
    Soininen, HE, MacDonald, E et al: (1981) Acta Neurol Scandinav. 64: 101–107.CrossRefGoogle Scholar
  112. 113.
    Sims, NR, Bowen, DM et al: (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from [u-14]glucose in vitro in human neocortex. J. Neurochem. 41: 329–334.CrossRefGoogle Scholar
  113. 114.
    Davies, P, Katzman, R, Terry, RD: (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia. Nature 288: 279–280.PubMedCrossRefGoogle Scholar
  114. 115.
    Davies, P, Terry, RD: (1981) Cortical somatostatin-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the alzheimer-type. Neurobiol Aging 2: 9–14.PubMedCrossRefGoogle Scholar
  115. 116.
    Rossor, MN, Emson, PC, et al: (1980) Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of alzheimer type. Neurosci Lett 20: 373–377.PubMedCrossRefGoogle Scholar
  116. 117.
    Bartus, RT, Dean, RL, Beer, B: (1983) An evaluation of drugs for improving memory in aged monkeys: implications for clinical trials in humans. Psychopharmacol Bull 19: 168–184.PubMedGoogle Scholar
  117. 118.
    Catteruccia, N, Willingale-Theune, J et al: (1990) Ultrastructure localization of the putative precursors of the A4 amyloid protein associated with Alzheimer’s disease. Am J Pathol 137: 19–26.PubMedGoogle Scholar
  118. 117.
    Bartus, RT, Dean, RL, Beer, B: (1983) An evaluation of drugs for improving memory in aged monkeys: implications for clinical trials in humans. Psychopharmacol Bull 19: 168–184.PubMedGoogle Scholar
  119. 118.
    Catteruccia, N, Willingale-Theune, J et al: (1990) Ultrastructure localization of the putative precursors of the A4 amyloid protein associated with Alzheimer’s disease. Am J Pathol 137: 19–26.PubMedGoogle Scholar
  120. 119.
    Unterbeck, A, Bayney, RM et al: Review of Biological Research in Aging 4: 139–162. M. Rothstein, Eds. Wilet-Liss N.Y., 1990.Google Scholar
  121. 120.
    Sisodia, SS, Koo, EH et al: (1990) Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248: 492–495.PubMedCrossRefGoogle Scholar
  122. 121.
    Muller-Hill, B, Beyreuther, K: (1989) Molecular biology of Alzheimer’s disease. Annu Rev Biochem 58: 287–307.PubMedCrossRefGoogle Scholar
  123. 122.
    Goldgaber, D, Lerman, MI et al: (1987) characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235: 877–880.PubMedCrossRefGoogle Scholar
  124. 123.
    de Sauvage, F, Octave, JN: (1989) A novel mRNA of the A4 amyloid precursor gene coding for a possibly secreted protein. Science 245: 651–657.PubMedCrossRefGoogle Scholar
  125. 124.
    Abraham, CR, Van Nostrand, W et al: Second International Conference on alzheimer’s disease and Related Disorders: Neurobiol Aging 11: 303, 1990.Google Scholar
  126. 125.
    Price, DL: (1986) New perspective on alzheimer’s disease. Annu Rev Neurosci 9: 489–512.PubMedCrossRefGoogle Scholar
  127. 126.
    St George-Hyslop, PH et al: (1987) Science 235: 885.PubMedCrossRefGoogle Scholar
  128. 127.
    Schellenberg, GD etal: (1992) Science 258: 668.PubMedCrossRefGoogle Scholar
  129. 128.
    St George-Huslop et al: (1992) Nature Genet 2: 330.CrossRefGoogle Scholar
  130. 129.
    Goate, A et al: (1991) Nature 349: 704.PubMedCrossRefGoogle Scholar
  131. 130.
    Pericak-Vance, MA et al: (1991) Am J Hum Genet 48: 1034.PubMedGoogle Scholar
  132. 131.
    Strittmatter, WJ et al: (1993) Proc Natl Acad Sci USA 90: 1977.PubMedCrossRefGoogle Scholar
  133. 132.
    Penicak-Vance, MA et al: (1988) Exp Neurol 102: 271.CrossRefGoogle Scholar
  134. 133.
    Corder, EH, Saunders, AM, Strittmatter, WJ et al: (1993) Gene dose of apolipoprotein E type 4 allele and the risk of alzheimer’s disease in late onset families. Science 261: 921–923.PubMedCrossRefGoogle Scholar
  135. 134.
    Bigalke, H et al: (1981) Tetanustoxin amd botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Naun Schmied Arch Pharmacol 315: 143–148.CrossRefGoogle Scholar
  136. 135.
    Bandyopadhay, S et al: (1987) Role of heavy and light chains of botulinum neurotoxin in neuromuscular paralysis. J Biol Chem 62: 2660–2663.Google Scholar
  137. 136.
    Lande, S et al: (1989) Effects of botulinum neurotoxin and Lambert-eaton myasthenic syndrome IgG at mouse nerve terminals. J Neural Transm 1: 229–242.CrossRefGoogle Scholar
  138. 137.
    Jankovic, J & Brin, MF: (1991) Therapeutic uses of botulinum toxin. N Engl Med 324: 1186–1194.CrossRefGoogle Scholar
  139. 138.
    Cohen, DA et al: (1986) Botulinum injection therapy for blepharospasm: a review and report of 75 patients. Clin Neuropharmacol 9: 415–429.PubMedCrossRefGoogle Scholar
  140. 139.
    Elston, J & Lee, J: (1988) Clinical use of botulinum toxin. Lancet 2: 1139.PubMedCrossRefGoogle Scholar
  141. 140.
    Fahn, S et al: (1985) Double-blind controlled study of botulinum toxin for blepharospasm. Neurology 35: 2–271.Google Scholar
  142. 141.
    Newman, NJ & Lambert, SR: (1992) Botulinum toxin treatment of supernuclear ocular mobility disorders. Neurology 42: 1391–1393.PubMedCrossRefGoogle Scholar
  143. 142.
    Brin, MF et al.: (1988) Localized injections of botulinum toxin for treatment of focal dystonia and hemifacial spasm. In: Fahn, S et al, ed. Advances in Neurology Bol 50 Dystonia 2 New York,: Raven Press; p 599–608.Google Scholar
  144. 143.
    Tang, LC, Schoomaker, EBS, Weissman, W: (1984) Cholinergic agonists stimulate calcium uptake and cGMP formation in human RBC. Biochem Biophys Acta 772: 235–238.PubMedCrossRefGoogle Scholar
  145. 144.
    Tang, LC: (1986) Identification and characterization of human erythrocyte muscarinic receptors. General Pharmacology 17: 281–285.PubMedGoogle Scholar
  146. 145.
    Tang, LC: (1991) Human erythrocyte as a model for investigating muscarinic agonists and antagonists. General Pharmacology 22: 485–490.PubMedGoogle Scholar
  147. 146.
    Levine, H & Cuatrecasas, P: (1981) An overview of toxin-receptor interactions. Pharmacol Ther 12: 167–207.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Lily C. Tang
    • 1
    • 2
  1. 1.Department of Experimental TherapeuticsWalter Reed Army Institute of ResearchUSA
  2. 2.SLCT, Inc.BethesdaUSA

Personalised recommendations