Skip to main content

Results from Quantum Cosmological Gravity

  • Chapter
Unified Symmetry
  • 108 Accesses

Abstract

This is a report on my work with Professor Nicholas Tsamis of the University of Crete on quantum gravity with a non-zero cosmological constant.1-5 Because this theory differs so radically from conventional quantum gravity we have taken to calling it, “quantum cosmological gravity,” or QCG for short. The Lagrangian of QCG is:

$$L = \frac{1}{{16\pi G}}\left( {R - 2\Lambda } \right)\sqrt { - g} + counterterms$$
(1)

where G is Newton’s constant, A is the cosmological constant, and we employ an infinite series of local counterterms to absorb ultraviolet divergences. The astute reader will note that our metric has spacelike signature and our Riemann tensor is \(R_{\sigma \mu \nu }^\rho = \Gamma _{\nu \sigma ,\mu }^\rho + \Gamma _{\mu \lambda }^\rho \Gamma _{\nu \sigma }^\lambda - \left( {\mu \leftrightarrow \nu } \right).\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. C. Tsamis and R. P. Woodard, Commun. Math. Phys. 162 (1994) 217.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. N. C. Tsamis and R. P. Woodard, Phys. Lett. B292 (1992) 269.

    ADS  Google Scholar 

  3. N. C. Tsamis and R. P. Woodard, Phys. Lett. B301 (1993) 351.

    ADS  Google Scholar 

  4. N. C. Tsamis and R. P. Woodard, “The Physical Basis For Infrared Divergences In Inflationary Quantum Gravity,” University of Florida preprint UFIFT-HEP93–17, July 1993.

    Google Scholar 

  5. N. C. Tsamis and R. P. Woodard, “Strong Infrared Effects In Quantum Gravity,” University of Florida preprint UFIFT-HEP-92–24, February 1994.

    Google Scholar 

  6. A Sandage, Observatory 88 (1968) 91.

    ADS  Google Scholar 

  7. C. Kounnas, M. Quiros and F. Zwirner, Nucl. Phys. B302 (9188) 403.

    MathSciNet  Google Scholar 

  8. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, Redwood City, CA, 1990).

    Google Scholar 

  9. G.‘t Hooft and M. Veltman, Ann. Inst. Henri Poincare 20A (1974) 69

    ADS  Google Scholar 

  10. S. Deser and P. van Nieuwenhuizen, Phys. Rev. D10 (1974) 401; Phys. Rev. D10 (1974) 411

    ADS  Google Scholar 

  11. S. Deser, H. S. Tsao and P. van Nieuwenhuizen, Phys. Rev. D10 (1974) 3337

    ADS  Google Scholar 

  12. M. Goroff and A. Sagnotti, Phys. Lett. B160 (1985) 81; Nucl. Phys. B266 (986) 709.

    Google Scholar 

  13. G. Feinberg and J. Sucher, Phys. Rev. 166 (1968) 1638.

    Article  ADS  Google Scholar 

  14. S. WeinbergPhys. Rev. 140 (1965) B516.

    Article  MathSciNet  ADS  Google Scholar 

  15. L. F. Abbott and S. Deser, Nucl. Phys. B195 (1982) 76.

    Article  ADS  Google Scholar 

  16. A. D. Dolgov, M. B. Einhorn and V. I. Zakharov, “On Infrared Effects In de Sitter Background,” University of Michigan preprint UM-TH-94–11, March 1994.

    Google Scholar 

  17. T. D. Lee and M. Nauenberg, Phys. Rev. 133 (1964) B1549.

    Article  MathSciNet  ADS  Google Scholar 

  18. E. A. TagirovAnn. Phys. 76 (1973) 561.

    Article  ADS  Google Scholar 

  19. G. Kleppe Phys. Lett. B317 (1993) 305.

    MathSciNet  ADS  Google Scholar 

  20. J. SchwingerJ. Math. Phys. 2 (1961) 407; Particles, Sources and Fields (Addison-Wesley, Reading, MA, 1970);R. Jordan, Phys. Rev. D33 (1986) 444.

    Google Scholar 

  21. L. H. FordPhys. Rev. D31 (1985) 710.

    ADS  Google Scholar 

  22. P. Ginsparg and M. J. Perry, Nucl. Phys. 222 (1983) 245.

    Article  MathSciNet  ADS  Google Scholar 

  23. R. P. Feynman, Acta Phys. Pol. 24 (1963) 697; in Magic Without Magic, edited by J. Klauder (Freeman, New York, 1972), p. 355.

    Google Scholar 

  24. G. VenezianoNucl. Phys. B44 (1972) 142.

    Article  ADS  Google Scholar 

  25. S. J. Avis, C. J. Isham and D. Storey, Phys. Rev. D18 (1978) 3565.

    MathSciNet  ADS  Google Scholar 

  26. G. Kleppe, “Greens Functions for Anti de Sitter Space Gravity,” University of Alabama preprint, UAHEP-94–03, April 1994.

    Google Scholar 

  27. A. D. Dolgov, M. B. Einhorn and V. I. Zakharov, “The Vacuum of de Sitter Space,” University of Michigan preprint UM-TH-94–14, May 1994.

    Google Scholar 

  28. T. S. Olson and T. F. JordanPhys. Rev. D35 (1987) 3258; P. J. E. Peebles and B. Ratra, Astrophys. J. Lett. 325 (1988) L17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woodard, R.P. (1995). Results from Quantum Cosmological Gravity. In: Kursunoglu, B.N., Mintz, S., Perlmutter, A. (eds) Unified Symmetry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1855-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1855-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5753-7

  • Online ISBN: 978-1-4615-1855-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics