Skip to main content

Dynamical Problems of Baryogenesis

  • Chapter
Unified Symmetry
  • 101 Accesses

Abstract

Above a certain temperature T c any non-Abelian gauge theory has a strongly-coupled sector, consisting of the three-dimensional magnetic gauge fields. We argue that in this sector the electroweak part of the standard model develops an entropy-dominated condensates of Z 2 strings, and that associated with those strings is a strongly-fluctuating Chern-Simons condensate driven by the strings’ linking, twisting, and writhing. (For SU(N) gauge groups with N≥3 there are links with trivalent vertices; these vertices also give rise to Chern-Simons fluctuations.) Similar phenomena happen for QCD; we discuss the effects of these, as well as QCD sphalerons, on baryogenesis. We outline an ongoing program, including study of the reaction of preexisting Chern-Simons condensates on the strings and sphalerons, and the problem of finding the non-perturbative electroweak free energy near the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The gauge and Higgs field configuration making up a sphaleron was first constructed by Dashen, Hasslacher, and Neveu (Phys. Rev. D10, 4138 (1974)), but not interpreted topologically. This was rediscovered and shown to interpolate topological charge by Manton and Klinkhamer (N. Manton, Phys. Rev. D28, 2019 (1983); F. Klinkhamer and N. Manton, ibid. 30, 2212 (1984)).

    Google Scholar 

  2. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B155, 36 (1985).

    ADS  Google Scholar 

  3. P. Arnold and L. McLerran, Phys. Rev. D36, 581 (1987); ibid. D37, 1020 (1988).

    Google Scholar 

  4. J. M. Cornwall, in Deeper Pathways in High-Energy Physics, ed. A. Perlmutter and L. F. Scott (Plenum Press, New York, 1977), p. 683. The QCD sphaleron was presented as a glueball, with no interpretation of its connection to the axial anomaly. Eq. (19) of this reference is a misprint.

    Google Scholar 

  5. J. M. Cornwall, Phys. Rev. D40, 4130 (1989).

    ADS  Google Scholar 

  6. A. Cohen, D. Kaplan, and A. Nelson, Nucl. Phys. B373, 453 (1992); Preprint UCSD-PTH-93–02 (1993).

    Google Scholar 

  7. J. M. Cornwall, Nucl. Phys. B -- (1994).

    Google Scholar 

  8. M. B. Shaposhnikov, Phys. Lett. B316, 112 (1993).

    ADS  Google Scholar 

  9. For a discussion of how d = 4 and d = 3 gauge theories resemble each other dynamically, see J. M. Cornwall, Physica A158, 97 (1989).

    Google Scholar 

  10. A. Linde, Phys. Lett. B96, 289 (1980).

    ADS  Google Scholar 

  11. J. M. Cornwall, Phys. Rev. D26, 1453 (1982)

    ADS  Google Scholar 

  12. J. M. Cornwall, W.-S. Hou, and J. E. King, Phys. Lett. B153, 173 (1985).

    ADS  Google Scholar 

  13. J. M. Cornwall, Phys. Rev. D40, 4130 (1989).

    ADS  Google Scholar 

  14. J. M. Cornwall, Nucl. Phys. B157, 392 (1979).

    Article  ADS  Google Scholar 

  15. E. Witten, Comm Math. Phys. B121, 351 (1989).

    Google Scholar 

  16. H. K. Moffatt, J. Fluid Mech. 35, 117 (1989).

    Article  ADS  Google Scholar 

  17. The calculation of Ref. 4 was felt by the author not to be highly accurate, so he requested someone to recalculate it, and the new answer was claimed to have a coefficient 3.1 in place of 5.3. This (erroneous) value was quoted in Ref. 12 and elsewhere, unfortunately.

    Google Scholar 

  18. L. Yaffe, Phys. Rev. D40, 3463 (1989).

    ADS  Google Scholar 

  19. First paper of Ref. 3. See also O. Philipsen, Phys. Lett. B304, 134 (1993), which has further references.

    Google Scholar 

  20. M. Lavelle, Phys. Rev. D44, R26 (1991).

    ADS  Google Scholar 

  21. G. F. Guidice and M. E. Shaposhnikov, CERN Preprint TH 7080/93 (November 1993, unpublished).

    Google Scholar 

  22. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B191, 301 (1981).

    Article  ADS  Google Scholar 

  23. J. M. Cornwall and A. Soni, Phys. Rev. D29, 1424 (1984).

    ADS  Google Scholar 

  24. J. White, Am. J. Math. 91, 693 (1969).

    Article  MATH  Google Scholar 

  25. L. H. Kauffmann, Knots and Physics (World Scientific, Singapore, 1991), p. 488.

    Google Scholar 

  26. Compare to the situation with fractional instantons (J. M. Cornwall and G. Tiktopoulos, Phys. Lett. B181, 353 (1986)). Two instantons, each carrying fractional charge but with integral total charge, must be joined by a sphaleronlike world line which is not detectable from the sphere at infinity, but an isolated fractional instanton would have the sphaleron branch line running all the way to infinity.

    Google Scholar 

  27. S. F. Edwards, J. Phys. Al, 15 (1968).

    Google Scholar 

  28. J. M. Cornwall and G. Tiktopoulos, Ref. 25

    Google Scholar 

  29. M. Hindmarsh and T. W. B. Kibble, Phys. Rev. Lett. 55, 2398 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  30. J. R. Espinosa, M. Quiros, and F. Zwirner, Phys. Lett. B314, 206 (1993); W. Buchmüller, Z. Fodor, T. Helbig, and D. Walliser, DESY Preprint 93–021 (1993).

    Google Scholar 

  31. See these Proceedings, and T. Vachaspati and G. B. Field, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cornwall, J.M. (1995). Dynamical Problems of Baryogenesis. In: Kursunoglu, B.N., Mintz, S., Perlmutter, A. (eds) Unified Symmetry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1855-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1855-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5753-7

  • Online ISBN: 978-1-4615-1855-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics