Skip to main content

Unification of Fundamental Interactions in Supersymmetry

  • Chapter
Unified Symmetry
  • 106 Accesses

Abstract

A review is given of recent developments on the implications of supergravity grand unification with SU(5)-type proton decay under the condition M H3 /mG < 10 (where M H3 , is the Higgs triplet mass) and the naturalness condition that the universal scalar mass mo and the gluino mass are < 1 TeV. It is shown that the maximum achievable lifetime limits on proton lifetime at Super Kamiokande and ICARUS will exhaust the full parameter space of the model under the constraint mŵ1, > 100 GeV. Thus the model predicts the observation of either a light chargino with mass ≲ 100 GeV, or the observation of a \(\bar{\nu }\) K + mode at Super Kamiokande and ICARUS within the above naturalness constraints. Analysis of the b → sγ branching ratio within this model is also discussed. It is shown that there is a significant region of the parameter space where the branching ratio predicted by the model lies within the current experimental bounds. It is pointed out that improved measurements of B(bsγ) will significantly delineate the parameter space of the model and allow for a more stringent determination of their allowed ranges.

ArticleFootNote

Invited Talk at the Conference on “Unified Symmetry in the Small and in the Large”, at Coral Gables, Florida, Jan 27-30, 1994.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Davier, Proc. Lepton-Photon High Energy Phys. Conference, Geneva, 1991, eds. S. Hegarty et al. (World Scientific, Singapore, 1991)

    Google Scholar 

  2. H. Bethke, Proc. XXVI Conference on High Energy Physics, Dallas, 1992, ed. J. Sanford, AIP Proc. No. 272 (1993).

    Google Scholar 

  3. P. Langacker, Proc. PASCOS90-Symposium, eds. P. Nath and S. Reucroft (World Scientific, Singapore, 1990)

    Google Scholar 

  4. J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. 249B (1990) 441; B260 (1991) 131

    Google Scholar 

  5. U. Amaldi, W. de Boer and H. Fürstenau, Phys. Lett. 260B (1991) 447

    ADS  Google Scholar 

  6. F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, Nuovo Cim. 104A (1991) 1817; 115A (1992) 581

    Google Scholar 

  7. M. Carena, S. Pokorski and C.E.M. Wagner, Munich preprint MPI-Ph/93–10.

    Google Scholar 

  8. A.H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 29 (1982) 970.

    Article  ADS  Google Scholar 

  9. P. Nath, R. Arnowitt and A.H. Chamseddine, “Applied N = 1 Supergravity” (World Scientific, Singapore, 1984).

    Google Scholar 

  10. R. Barbieri, S. Ferrara and C.A. Savoy, Phys. Lett. B119 (1983) 343.

    ADS  Google Scholar 

  11. L. Hall, J. Lykken and S. Weinberg, Phys. Rev. D22 (1983) 2359.

    ADS  Google Scholar 

  12. P. Nath, R. Arnowitt and A.H. Chamseddine, Nucl. Phys. B227 (1983) 121; S. Soni and A. Weldon, Phys. Lett. B216 (1983) 215.

    Google Scholar 

  13. S. Dimopoulos and H. Georgi, Nucl. Phys. B1983 (1981) 150; N. Sakai, Z. Phys. C11 (1981) 153.

    Google Scholar 

  14. K. Inoue et al.,Prog. Theor. Phys. 68 (1982) 927

    Article  ADS  Google Scholar 

  15. L. Ibañez and G.G. Ross, Phys. Lett. B110 (1982) 227

    Google Scholar 

  16. L. Alvarez-Gaumé, J. Polchinski and M.B. Wise, Nucl. Phys. B250 (1983) 495

    Article  ADS  Google Scholar 

  17. J. Ellis, J. Hagelin, D.V. Nanopoulos and K. Tamvakis, Phys. Lett. 125B (1983) 275

    ADS  Google Scholar 

  18. L.E. Ibañez, C. Lopez and C. Muñoz, Nucl. Phys. B256 (1985) 218.

    Article  ADS  Google Scholar 

  19. S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888

    ADS  Google Scholar 

  20. S. WeinbergPhys. Rev. D7 (1973) 2887.

    ADS  Google Scholar 

  21. G. Gamberini, G. Ridolfi and F. Zwirner, Nucl. Phys. B331 (1990) 331.

    Article  ADS  Google Scholar 

  22. R. Arnowitt and P. Nath, Phys. Rev. D46 (1992) 725.

    Google Scholar 

  23. R. Arnowitt and P. Nath, Phys. Rev. Lett. 69 (1992) 725.

    Article  ADS  Google Scholar 

  24. P. Nath and R. Arnowitt, Phys. Lett. B289 (1992) 368.

    ADS  Google Scholar 

  25. S. Kelley, J. Lopez, D.V. Nanopoulos, H. Pois and K. Yuan, Phys. Lett. B272 (1991) 423.

    ADS  Google Scholar 

  26. G.G. Ross and R.G. Roberts, Nucl. Phys. B377 (1992)-971.

    Google Scholar 

  27. M. Drees and M.M. Nojiri, Nucl. Phys. B369 (1992) 54.

    Article  ADS  Google Scholar 

  28. IC Inoue et al., Phys. Rev. D45 (1992) 387.

    Google Scholar 

  29. S.P. Martin and P. Ramond, preprint NUB-3067–93 TH/SSCL-439 (1993).

    Google Scholar 

  30. M. Olechowski and S. Pokorski, Nucl. Phys. B404 (1993) 590.

    Article  ADS  Google Scholar 

  31. D.J. Castaño, E.J. Piard and P. Ramond, Univ. Florida preprint UFIFT-HEP-93–18 (1993).

    Google Scholar 

  32. V. Barger, M.S. Berger and P. Ohman, Univ. Wisconsin preprint MAD/PH/801 (1993).

    Google Scholar 

  33. G.L. Kane, C. Kolda, L. Roszkowski and J.D. Wells, Univ. Michigan preprint UM-TH-9324 (1993).

    Google Scholar 

  34. W. de Boer, R. Ehret and D. Kazakov, Karlsruhe preprint IEKP-KA/93/13 (1993).

    Google Scholar 

  35. Z. Kunszt and F. Zwirner, Nucl. Phys. B385 (1992) 3

    Article  ADS  Google Scholar 

  36. H. Baer, C. Kao and X. Tata, Phys. Lett. B303 (1993) 289.

    ADS  Google Scholar 

  37. R. Arnowitt, A.H. Chamseddine and P. Nath, Phys. Lett. 156B (1985) 215

    ADS  Google Scholar 

  38. P. Nath, R. Arnowitt and A.H. Chamseddine, Phys. Rev. 32D (1985) 2348

    ADS  Google Scholar 

  39. J. Hisano, H. Murayama and T. Yanagida, Nucl. Phys. B402 (1993) 46

    Article  ADS  Google Scholar 

  40. J. Ellis, D.V. Nanopoulos and S. Rudaz, Nucl. Phys. B202 (1982) 43 and references quoted therein.

    Article  ADS  Google Scholar 

  41. R. Becker-Szendy et al., Phys. Rev. D47 (1993) 4028.

    Google Scholar 

  42. Y. Totsuka, Proc. XXIV Conf. on High Energy Physics, Munich, 1988, eds. R. Kotthaus and J.H. Kühn (Springer Verlag, Berlin Heidelberg, 1989).

    Google Scholar 

  43. ICARUS Detector Group, Int. Symposium on Neutrino Astrophysics, Takayama, 1992.

    Google Scholar 

  44. R. Arnowitt and P. Nath, preprint CTP-TAMU-32/93/NUB-TH-3066/93/SSCL-440 (1993).

    Google Scholar 

  45. E. Thorndike et al., Bull. Am. Phys. Soc. 38 (1993) 922; R. Ammar et al., Phys. Rev. Lett. 71 (1993) 674.

    Google Scholar 

  46. C. Bernard, P. Hsieh and A. Soni, Washington Univ. preprint HEP/93/35 (1993).

    Google Scholar 

  47. M. MisiakNucl. Phys. B393 (1993) 23.

    Article  ADS  Google Scholar 

  48. S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B353 (1991) 591.

    Article  ADS  Google Scholar 

  49. R. Barbieri and G. Giudice, Phys. Lett. B309 (1993) 86

    ADS  Google Scholar 

  50. J.L. Hewett, Phys. Rev. Lett. 70 (1993) 1045

    Article  ADS  Google Scholar 

  51. V. Barger, M.S. Berger and R.J.N. Phillips, Phys. Rev. Lett. 70 (1993) 1369

    Article  ADS  Google Scholar 

  52. M.A. Diaz, Phys. Lett. B304 (1993) 278

    ADS  Google Scholar 

  53. N. Oshima, Nucl. Phys. B404 (1993) 20

    Article  ADS  Google Scholar 

  54. R. Garisto and J.N. Ng, Phys. Lett. B315 (1993) 372.

    ADS  Google Scholar 

  55. J.L. Lopez, D.V. Nanopoulos and G.T. Park, Phys. Rev. D48 (1994) R974

    ADS  Google Scholar 

  56. F.M. Borzumati, preprint DESY 93–90 (1993).

    Google Scholar 

  57. P. Nath and R. Arnowitt, in preparation.

    Google Scholar 

  58. J. Wu, R. Arnowitt and P. Nath, in preparation.

    Google Scholar 

  59. B. Grinstein, R. Springer and M. Wise, Nucl. Phys. B339 (1990) 269

    Article  ADS  Google Scholar 

  60. M. Misiak, Phys. Lett. B269 (1991) 161.

    ADS  Google Scholar 

  61. P. Cho and M. Misiak, Caltech preprint CALT-68–1893 (1968).

    Google Scholar 

  62. V. Barger, M.S. Berger and P. Ohmann, Phys. Rev. D47 (1993) 1094

    ADS  Google Scholar 

  63. P. Langacker and N. Polonski, Univ. Pennsylvania preprint UPR-0556-T (1993)

    Google Scholar 

  64. W. Bardeen, M. Carena, S. Pokorski and C.E.M. Wagner, Munich preprint MPI=Ph/93–58 (1993).

    Google Scholar 

  65. T. Dasgupta, Private Communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nath, P., Arnowitt, R. (1995). Unification of Fundamental Interactions in Supersymmetry. In: Kursunoglu, B.N., Mintz, S., Perlmutter, A. (eds) Unified Symmetry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1855-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1855-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5753-7

  • Online ISBN: 978-1-4615-1855-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics