Realistic Superstring Models

  • Alon E. Faraggi

Abstract

I discuss the construction of realistic superstring standard-like models in the four dimensional free fermionic formulation. I discuss the massless spectrum of the superstring standard-like models and the texture of fermion mass matrices. These models suggest an explanation for the top quark mass hierarchy. At the cubic level of the superpotential only the top quark get a mass term. The lighter quarks and leptons obtain their mass terms from nonrenormalizable terms that are suppressed relative to the cubic order term. A numerical estimate yielded m t ∼175 — 180 GeV. The suppression of the lightest generation masses results from the horizontal symmetries in the superstring models. The problems of neutrino masses, gauge coupling unification and hierarchical SUSY breaking are discussed. I argue that the realistic features of these models are due to the underlying Z 2 × Z2 orbifold, with standard embedding, at the free fermionic point in toroidal compactification space.

Keywords

Manifold MilO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Altarelli, unpublished talk given at the conference Around the Dyson Sphere, Princeton, NJ, April 8–9, 1994.Google Scholar
  2. 2.
    D.J.Gross, J.A.Harvey, J.A.Martinec and R.Rohm, Phys.Rev.Lett. 54 (1985) 502; Nucl.Phys.B 256 (1986) 253.Google Scholar
  3. 3.
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl.Phys.B 258 (1985) 46.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    L. Dixon, J.A. Harvey, C. Vafa and E. Witten, Nucl.Phys.B 274 (1986) 285.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    K.S. Narain, Phys.Lett.B 169 (1986) 41; W. Lerche, D. Lüst and A.N. Schellekens, Nucl.Phys.B 287 (1987) 477.Google Scholar
  6. 6.
    I. Antoniadis, C. Bachas, and C. Kounnas, Nucl.Phys.B 289 (1987) 87;H.Kawai, D.C.Lewellen, and S.H.-H.Tye, Nucl.Phys.B 288 (1987) 1.Google Scholar
  7. 7.
    D. Gepner, Phys.Lett.B 199 (1987) 380;Nucl.Phys.B 296 (1988) 57.Google Scholar
  8. 8.
    I. Antoniadis, J. Ellis, J. Hagelin, and D.V.Nanopoulos, Phys.Lett.B 231 (1989) 65; I. Antoniadis, G. K. Leontaris and J. Rizos, Phys.Lett.B 245 (1990) 161; J. Lopez, D.V. Nanopoulos and K. Yuan, Nucl.Phys.B 399 (1993) 654, hep-th/9203025.Google Scholar
  9. 9.
    B. Greene el al., Phys.Lett.B180 (1986) 69; Nucl.Phys.B278 (1986) 667; B292 (1987) 606; R. Arnowitt and P. Nath, Phys.Rev.D39 (1989) 2006; D42 (1990) 2498; Phys.Rev.Lett. 62 (1989) 222.Google Scholar
  10. 10.
    L.E. Ibañez et al., Phys.Lett. B191(1987) 282; A. Font et al., Phys.Lett. B210 (1988) 101; A. Font et al., Nucl.Phys. B331 (1990) 421; D. Bailin, A. Love and S. Thomas, Phys.Lett.B194 (1987) 385; Nucl.Phys.B298 (1988) 75; J.A. Casas, E.K. Katehou and C. Muñoz, Nucl.Phys.B317 (1989) 171.Google Scholar
  11. 11.
    A.E. Faraggi, D.V. Nanopoulos and K. Yuan, Nucl.Phys.B 335 (1990) 347.ADSCrossRefGoogle Scholar
  12. 12.
    A.E. Faraggi, Phys.Lett.B 278 (1992) 131ADSCrossRefGoogle Scholar
  13. 13.
    A.E. Faraggi, Phys.Lett.B 274(1992) 47ADSCrossRefGoogle Scholar
  14. 14.
    A.E. Faraggi, Nucl.Phys.B 387(1992) 239, hep-th/9208024MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S. Weinberg, Phys.Rev.D 26 (1982) 475; S. Sakai and T. Yanagida, Nucl.Phys.B 197 (1982) 533; R. Arnowitt, A.H. Chamsdine and P. Nath, Phys.Rev.D 32 (1985) 2348.Google Scholar
  16. 16.
    S. Kalara, J. Lopez and D.V. Nanopoulos, Nucl.Phys.B 353 (1991) 650.MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A.E. Faraggi, Phys.Rev.D 47 (1993) 5021.MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    A.E.Faraggi, Nucl.Phys.B 407 (1993) 57, hep-ph/9210256; Phys.Lett.B 326 (1994) 62, hep-ph/9311312.Google Scholar
  19. 19.
    M. Dine, N. Seiberg and E. Witten, Nucl.Phys.B289 (1987) 589.MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    A.E. Faraggi, Nucl.Phys.B 403 (1993) 101, hep-th/9208023.ADSCrossRefGoogle Scholar
  21. 21.
    A.E. Faraggi and E. Halyo, Phys.Lett.B 307 (1993) 305, hep-ph/9301261; Nucl.Phys.B 416 (1994) 63, hep-ph/9306235.Google Scholar
  22. 22.
    B. Grzadkowski, M. Lindner and S. Theisen, Phys.Lett.B 198 (1987) 64.ADSCrossRefGoogle Scholar
  23. 23.
    A.E. Faraggi, Phys.Lett.B 302 (1993) 202, hep-ph/9301268.ADSCrossRefGoogle Scholar
  24. 24.
    A.E. Faraggi and E. Halyo, IASSNS—HEP-94/17, hep-ph/9405223.Google Scholar
  25. 25.
    For a recent review see, A. Giveon, M. Porrati and E. Rabinovici, RI-1–94, NYU—TH.94/01/01, hep-th/9401139.Google Scholar
  26. 26.
    A.E. Faraggi and E. Halyo, Phys.Lett.B 307 (1993) 311.ADSCrossRefGoogle Scholar
  27. 27.
    D. Amati et. al., Phys.Rep. 162 (1988) 169.MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    D. Lüst and T. Taylor, Phys.Lett.B 253 (1991) 335.ADSCrossRefGoogle Scholar
  29. 29.
    S. Kalara, J.L. Lopez, D.V. Nanopoulos, Phys.Lett.B 275 (1991) 304, hepph/9110023.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Alon E. Faraggi
    • 1
  1. 1.School of Natural ScienceInstitute for Advanced StudyPrincetonUSA

Personalised recommendations