Cytoarchitecture and Chemistry of Midbrain Dopaminergic Cell Groups

  • Deborah A. McRitchie
  • Glenda M. Halliday
Part of the Advances in Behavioral Biology book series (ABBI, volume 43)

Abstract

The ventral midbrain contains three dopaminergic cell groups in the rat which have been designated A8, A9, and A10, on their rostrocaudal position and relations with surrounding structures (Dahlström and Fuxe, 1964). Each of these groups has extensive cortical and subcortical projections. These cell groups are closely homologous with those identified in humans, where the A8 cell group is present in the lateral and caudolateral midbrain, the A9 cell group in the substantia nigra, and the heterogeneous A10 cell group, dorsal and medial to the A9 group (Bogerts, 1981; Saper and Petito, 1982; Halliday and Törk, 1986; Pearson et al., 1990).

Keywords

Formalin Hydrogen Peroxide Sucrose Dopamine Tyrosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, R., L. Winsky, M. Arai and D.M. Jacobowitz (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J. Comp. Neurol. 310: 21–44.PubMedCrossRefGoogle Scholar
  2. Baimbridge, K.G., M.R. Celio and J.H. Rogers (1992) Calcium-binding proteins in the nervous system. Trends Neurosci. 15: 303–308.PubMedCrossRefGoogle Scholar
  3. Bernheimer, H., W. Birkmayer, O. Hornykiewicz, K. Jellinger and F. Seitelberger (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 20: 415–455.PubMedCrossRefGoogle Scholar
  4. Bogerts, B (1981) A brainstem atlas of catcholaminergic neurons in man, using melanin as a natural marker. J. Comp. Neurol. 197: 63–80.PubMedCrossRefGoogle Scholar
  5. Braak, H. and E. Braak (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Human Neurobiol. 5: 71–82.Google Scholar
  6. Celio, M.R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35: 375–475.PubMedCrossRefGoogle Scholar
  7. Dahlström, A. and K. Fuxe (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in cell bodies of brainstem neurons. Acta Physiol. Scand. Suppl. 232: 1–55.Google Scholar
  8. Del Fiacco, M., M.L. Dessi and M.C. Levanti (1984) Topographical localization of substance P in the human post-mortem brainstem. An immunohistochemical study in the new born and adult tissue. Neuroscience 12: 591–611.PubMedCrossRefGoogle Scholar
  9. Deutch, A.Y., M. Goldstein, F. Baldino and R.H. Roth (1988) Telencephalic projections of the A8 dopaminergic cell group. Ann. N.Y. Acad. Sci. 537: 27–50.PubMedCrossRefGoogle Scholar
  10. Domesick, V.B. (1988) Neuroanatomical organization of dopaminergic neurons in the ventral tegmental area. Ann. NY Aead. Sci. 537: 10–25.CrossRefGoogle Scholar
  11. Dorn, A., K. Schmidt, W. Schmidt, H.-G. Bernstein, A. Rinne and I. Röse (1985) Localization of cholecystokinin immunoreactivity in the human brain with special reference to ontogeny. J. Hirnforsch. 26: 167–171.PubMedGoogle Scholar
  12. Fearnley, J.M. and A.J. Lees (1991) Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain 114: 2283–2301.PubMedCrossRefGoogle Scholar
  13. Forno, L.S. (1966) Pathology of Parkinsonism. J. Neurosurg. 24: 266–271.Google Scholar
  14. Fournet, N., L.M. Garcia-Segura, A.W. Norman and L, Orci (1986) Selective localization of calciumbinding protein in human brainstem, cerebellum and spinal cord. Brain Res. 399: 310–316.PubMedCrossRefGoogle Scholar
  15. Gaspar, P., B. Berger, M. Gay, M. Hamon, F. Cesselin, A. Vigny, F. Javoy-Agid and Y. Agid (1983) Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. J. Neurol. Sci. 58: 247–267.PubMedCrossRefGoogle Scholar
  16. Gerfen, C.R., K.G. Baimbridge and J.J. Miller (1985) The neostriatal mosaic: Compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc. Natl. Acad. Sci. USA 82: 8780–8784.PubMedCrossRefGoogle Scholar
  17. Gerfen, C.R., M. Herkenham and J. Thibault (1987) The neostriatal mosaic: II. Patch-and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J. Neurosci. 7: 3915–3934.PubMedGoogle Scholar
  18. German, D.C., K. Manaye, W.K. Smith, D.J. Woodward and C.B. Saper (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization. Ann. Neurol. 26: 507–514.PubMedCrossRefGoogle Scholar
  19. German, D.C., K.F. Manaye, P.K. Sonsalla and B.A. Brooks (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: Sparing of calbindin-D228k-containing cells. Ann. N.Y. Acad. Sci. USA 648: 42–62.CrossRefGoogle Scholar
  20. German, D.C., D.S. Schlusselberg and D.J. Woodward (1983) Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: From mouse to man. J. Neural Transmission 57: 243–254.CrossRefGoogle Scholar
  21. Gibb, W.R.G. (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res. 581: 283–291.PubMedCrossRefGoogle Scholar
  22. Gibb, W.R.G. and A.J. Lees (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J. Neurol. Neurosurg. Psychiat. 54: 388–396.PubMedCrossRefGoogle Scholar
  23. Giolli, R.A., R.H.I. Blanks, Y. Torigoe and D.D. Williams (1985) Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase. J. Comp. Neurol. 232: 99–116.PubMedCrossRefGoogle Scholar
  24. Goto, S., A. Hirano and S. Matsumoto (1989) Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration. 26Google Scholar
  25. Goto, S., A. Hirano and S. Matsumoto (1990) Immunohistochemical study of the striatal efferents and nigral dopaminergic neurons in Parkinsonism-dementia complex on Guam in comparison with those in Parkinson’s and Alzheimer’s diseases. Ann. Neurol. 27: 520–527.PubMedCrossRefGoogle Scholar
  26. Goto, S., Y. Matsukado, Y. Mihara, N. Inoue and E. Miyamoto (1986) Calcineurin in human brain and its relation to extrapyramidal system. Acta Neuropathol. 72: 150–156.PubMedCrossRefGoogle Scholar
  27. Greenfield, J.G. and F.D. Bosanquet (1953) The brain-stem lesions in Parkinsonism. J. Neurol. Neurosurg. Psychiat. 16: 213–226.PubMedCrossRefGoogle Scholar
  28. Halliday, G.M., Y.W. Li, P.C. Blumbergs, T.H. Joh, R.G.H. Cotton, P.R.C. Howe, W.W. Blessing and L.B. Geffen (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann. Neurol. 27: 373–385.PubMedCrossRefGoogle Scholar
  29. Halliday, G.M. and I. Törk (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J. Comp. Neurol. 252: 423–445.PubMedCrossRefGoogle Scholar
  30. Hassler, R. (1938) Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J. Psychol. Neurol. 48: 387–476.Google Scholar
  31. Hökfelt, T., J.F. Rehfeld, L. Skirboll, B. Ivemark, M. Goldstein and K. Markey (1980) Evidence for coexistence of dopamine and CCK in mesolimbic neurones. Nature 285: 476–478.PubMedCrossRefGoogle Scholar
  32. Inagaki, S., M. Sakanaka, S. Shiosaka, E. Senba, K. Takatsuki, H. Takagi, Y. Kawai, H. Minagawa and M. Tohyama (1982) Ontogeny of substance P-containing neuron system of the rat: Immunohistochemical analysis-I. Forebrain and upper brain stem. Neuroscience 7: 251–277.PubMedCrossRefGoogle Scholar
  33. Ince, P., N. Stout, P. Shaw, J. Slade, W. Hunziker, C.W. Heizmann and K.G. Baimbridge (1993) Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. 19: 291–299.PubMedCrossRefGoogle Scholar
  34. Ito, H., S. Goto, S. Sakamoto and A. Hirano (1992) Calbindin-D28k in the basal ganglia of patients with Parkinsonism. Ann. Neurol. 32: 543–550.PubMedCrossRefGoogle Scholar
  35. Jellinger, K. (1986) Overview of morphological changes in Parkinson’s disease. In M.D. Yahrand K.J. Bergmann (eds): Advances in Neurology. New York: Raven Press, pp. 1–18.Google Scholar
  36. Kitahama, K., L. Denoroy, M. Goldstein, M. Jouvet and J. Pearson (1988) Immunohistochemistry of tyrosine hydroxylase and phenylethanolamine N-memyltransferase in the human brain stem: Description of adrenergic perikarya and characterization of longitudinal catecholaminergic pathways. Neuroscience 25: 97–111.PubMedCrossRefGoogle Scholar
  37. Kiyama, H., A. Seto-Ohshima and P.C. Emson (1990) Calbindin D28k as a marker for the degeneration of the striatonigral pathway in Huntington’s disease. Brain Res. 525: 209–214.PubMedCrossRefGoogle Scholar
  38. Ljungdahl, Å., T. Hökfelt and G. Nilsson (1978) Distribution of substance P-like immunoreactivity in the central nervous system. Neuroscience 3: 861–943.PubMedCrossRefGoogle Scholar
  39. Mai, J.K., P.H. Stephens, A. Hopf and A.C. Cuello (1986) Substance P in the human brain. Neuroscience 17: 709–739.PubMedCrossRefGoogle Scholar
  40. Nauta, W.J.H., G.P. Smith, R.L.M. Faull and V.B. Domesick (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3: 385–401.PubMedCrossRefGoogle Scholar
  41. Oades, R.D. and G.M. Halliday (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res. Rev. 12: 117–165.CrossRefGoogle Scholar
  42. Olszewski, J. and D. Baxter (1954) Cytoarchitecture of the human brain stem. ed., Vol. Basel: Karger.Google Scholar
  43. Oyanagi, K., S. Takeda, H. Takahashi, E. Ohama and F. Ikuta (1989) A quantitative investigation of the substantia nigra in Huntington’s disease. Ann. Neurol. 26: 13–19.PubMedCrossRefGoogle Scholar
  44. Palacios, J.M., M. Savasta and G. Mengod (1989) Does cholecystokinin colocalize with dopamine in the human substantia nigra? Brain Res. 488: 369–375.PubMedCrossRefGoogle Scholar
  45. Paulus, W. and K. Jellinger (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 50: 743–755.PubMedCrossRefGoogle Scholar
  46. Paxinos, G. and C. Watson (1986) The rat brain in stereotaxic coordinates. 2nd ed., Sydney: Academic Press.Google Scholar
  47. Pearson, J., M. Goldstein, K. Markey and L. Brandes (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neurosci. 8: 3–32.CrossRefGoogle Scholar
  48. Pearson, J., G. Halliday, N. Sakamoto and J.-P. Michel (1990) Catecholaminergic neurons. In G. Paxinos (ed): The Human Nervous System. San Diego: Academic Press, pp. 1023–1049.Google Scholar
  49. Résibois, A. and J.H. Rogers (1992) Calretinin in rat brain: An immunohistochemical study. Neuroscience 46: 101–134.PubMedCrossRefGoogle Scholar
  50. Rinne, J.O., J. Rummukainen, L. Paljärvi and U.K. Rinne (1989) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann. Neurol. 26: 47–50.PubMedCrossRefGoogle Scholar
  51. Rogers, J.H. (1992) Immunohistochemical markers in the rat brain: Colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res. 587: 203–210.PubMedCrossRefGoogle Scholar
  52. Saper, C.B. and C.K. Petito (1982) Correspondence of melanin-pigmented neurons in human brain with A1A 14 catecholamine cell groups. Brain 105: 87–101.PubMedCrossRefGoogle Scholar
  53. Satoh, J., T. Tabira, M. Sano, H. Nakayama and J. Tateishi (1991) Parvalbumin-immunoreactive neurons in the human central nervous system are decreased in Alzheimer’s disease. Acta Neuropathol. 81: 388–395.PubMedCrossRefGoogle Scholar
  54. Shults, C.W., R. Quirion, B. Chronwall, T.N. Chase and T.L. O’Donohue (1984) A comparison of the anatomical distribution of substance P and substance P receptors in the rat central nervous system. Peptides 5: 1097–1128.PubMedCrossRefGoogle Scholar
  55. Swanson, L.W. (1982) The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9: 321–353.PubMedCrossRefGoogle Scholar
  56. Takada, M. and T. Hattori (1987) Organization of ventral tegmental area cells projecting to the occipital cortex and forebrain in the rat. Brain Res. 418: 27–33.PubMedCrossRefGoogle Scholar
  57. Uchihara, T., H. Kondo, K. Kosaka and H. Tsukagoshi (1992) Selective loss of nigral neurons in Alzheimer’s disease: a morphometric study. Acta Neuropathol. 83: 271–276.PubMedCrossRefGoogle Scholar
  58. Uchihara, T., K. Tsuchiya and K. Kosaka (1990) Selective loss of nigral neurons in Pick’s disease: a morphometric study. Acta Neuropathol. 81: 155–161.PubMedCrossRefGoogle Scholar
  59. Yamada, T., P.L. McGeer, K.G. Baimbridge and E.G. McGeer (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526: 303–307.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Deborah A. McRitchie
    • 1
  • Glenda M. Halliday
    • 1
  1. 1.Prince of Wales Medical Research InstitutePrince of Wales HospitalRandwickAustralia

Personalised recommendations