Skip to main content

Huntington’s Disease and Neural Transplantation: GABAA Receptor Changes in the Basal Ganglia in Huntington’s Disease in the Human Brain and in the Quinolinic Acid Lesioned Rat Model of the Disease Following Fetal Neuron Transplants

  • Chapter
Neurotransmitters in the Human Brain

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 43))

Abstract

A particularly exciting and novel development in the treatment of neurological diseases is the suggestion from both animal and human studies that neural grafts may provide an effective means of treating chemospecific neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease etc. In recent years neural grafting in degenerative diseases of the nervous system has emerged from the realm of the theoretical to that of the practical. In Parkinson’s disease, autografts of adrenal medulla cells to the caudate nucleus of the brain have been shown to produce improvements in the clinical signs of the disease (Madrazo et al., 1987) and patients with idiopathic and MPTP induced Parkinson’s disease have shown improvements following human fetal neural transplants (Freed et al., 1992; Spencer et al., 1992; Widner et al., 1992). Also, neural grafts of embryonic striatal neurons have been shown to partially restore some neurochemical deficits and to ameliorate behavioural and locomotor impairment in animal models of Huntington’s disease (Isacson et al., 1984, 1985, 1986; Hantraye et al., 1992). These findings and others have led to the Suggestion that neural transplantation may offer the prospect of a viable strategy for structural repair in Huntington’s disease (Dunnett and Svendsen, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F, Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid, Nature 321: 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F, Kowall, N.W., Swartz, K.J., Ferrante, R.J., and Martin, J.B., 1989, Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions, Synapse 3: 38–47.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., Stenevi, U., Schmidt, R.H., Dunnett, S.B., and Gage, RH., 1983, Intracerebral grafting of neuronal cell suspensions 1. Introductions and general methods of preparation, Acta Physiol Scand. Suppl. 552: 1–7.

    Google Scholar 

  • Boegman, R.J., Smith, Y., and Parent, A., 1987, Quinolinic acid does not spare striatal neuropeptide Y-immunoreactive neurons, Brain Res. 415: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.W., and Roberts, P.J., 1987, No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid, Nature 327: 326–329.

    Article  PubMed  CAS  Google Scholar 

  • Dawbarn, D., De Quidt, M.E., and Emson, P.C., 1985, Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease, Brain Res. 340: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., 1990, Excitotoxic injury of the neostriatum: a model for Huntington’s disease, Trends Neurosci. 13: 286–289.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M., Faull, R.L.M., Waldvogel, H.J., Williams, M.N., and Leah, J., 1991, Elevated expression of jun and fos-related proteins in transplanted striatal neurons, Brain Res. 558: 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M., Williams, M., and Faull, R.L.M., 1990, Haloperidol induces Fos and related molecules in intrastriatal grafts derived from fetal striatal primordia, Brain Res. 530: 309–311.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., and Svendsen, C.N., 1993, Huntington’s disease: animal models and transplantation repair, Current Opinion in Neurobiology 3: 790–796.

    Article  PubMed  CAS  Google Scholar 

  • Ellison, D.W., Beal, M.F., Mazurek, M.F, Malloy, J.R., Bird, E.D., and Martin, J.B., 1987, Amino acid neurotransmitter abnormalities in Huntington’s disease and the quinolinic acid animal model of Huntington’s disease, Brain 110: 1657–1673.

    Article  PubMed  Google Scholar 

  • Faull, R.L.M., Dragunow, M., and Villiger, J.W., 1989, The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment, Brain Res. 488: 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Faull, R.L.M., and Villiger, J.W., 1986, Heterogeneous distribution of benzodiazepine receptors in the human striatum: a quantitative autoradiographic study comparing the pattern of receptor labelling with the distribution of acetylcholinesterase staining, Brain Res. 381: 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Faull, R.L.M., and Villiger, J.W., 1988, Multiple benzodiazepine receptors in the human basal ganglia: a detailed pharmacological and anatomical study, Neurosci. 24: 433–451.

    Article  CAS  Google Scholar 

  • Faull, R.L.M., Waldvogel, H.J., Nicholson, L.F.B., and Synek, B.J.L., 1993, The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington’s disease and in the quinolinic acid-lesioned rat, Prog. Brain Res. 99: 105–123.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, E.P., Bird, E.D., and Martin, J.B., 1985, Selective sparing of a class of striatal neurons in Huntington’s disease, Science 230: 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Kowall, N.W., Beal, M.F., Martin, J.B., Bird, E.D., and Richardson E.P., 1987, Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease, J. Neuropath, exp. Neurol. 46: 12–27.

    Article  CAS  Google Scholar 

  • Freed, C.R., Breeze, R.E., Rosenberg, N.L., Schneck, S.A, Kriek, E., Qi, J.-X., Lone, T., Zhang, Y.-B., Snyder, J.A., Wells, Ramig, L.O., Thompson, L., Mazziotta, J.C., Huang, S.C., Grafton, S,T., Brooks, D., Sawle, G., Schroter, G., and Ansari, A.A., 1992, Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease, N. Eng. J. Med. 327: 1549–1555.

    Article  CAS  Google Scholar 

  • Fritschy, J.-M., Benke, D., Mertens, S., Oertel, W.H., Bachi, T., and Möhler, H., 1992, Five subtypes of type A γ-aminobutyric acid receptors identified in neurons by double and triple imunofluorescence staining with subunit-specific antibodies, Proc. Natl. Acad. Sci. U.S.A. 89: 6726–6730.

    Article  PubMed  CAS  Google Scholar 

  • Graveland, G.A., Williams, R.S., and DiFiglia, M., 1985, Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease, Science 227: 770–773.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, AM., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci. 13: 244–254.

    Article  PubMed  CAS  Google Scholar 

  • Hantraye, P., Riche, D., Maziere, M., and Isacson, O., 1992, Intrastriatal transplantation of crossspecies fetal striatal cells reduces abnormal movements in a primate model of Huntington disease, Proc. Natl. Acad. Sci. U.S.A. 89: 4187–4191.

    Article  PubMed  CAS  Google Scholar 

  • Häring, P., Stähli, C., Schoch, P., Takács, B. Staehelin, T., and Möhler, H., 1985, Monoclonal antibodies reveal structural homogeneity of γ-aminobutyric acid/benzodiazepine receptors in different brain areas, Proc. Natl. Acad. Sci. U.S.A. 82: 4837–4841.

    Article  PubMed  Google Scholar 

  • Hayden, M.R., 1981, Huntington’s Chorea, Springer-Verlag, New York, 192pp.

    Book  Google Scholar 

  • Houser, C.R., Olsen, R.W., Richards, J.G., and Möhler, H., 1988, Immunohistochemical localization of benzodiazepine/GABAA receptors in the human hippocampal formation, J. Neurosci. 8: 1370–1383.

    PubMed  CAS  Google Scholar 

  • Isacson, O., Brundin, P., Gaye, F.H., and Bjorklund, A., 1985, Neural grafting in a rat model of Huntington’s Disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting, Neurosci. 16: 799–817.

    Article  CAS  Google Scholar 

  • Isacson, O., Brundin, P., Kelly, P.A.T., Gage, F.H., and Bjorklund, A., 1984, Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum, Nature 311: 458–460.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dunnett, S.B., and Bjorklund, A., 1986, Graft-induced behavioral recovery in an animal model of Huntington disease, Proc. Natl. Acad. Sci. 83: 2728–2732.

    Article  PubMed  CAS  Google Scholar 

  • Kiepner, C.A., Lippa, A., Benson, D.I., Sano, M.C., and Beer, B., 1979, Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors, Pharmac. Biochem. Behav. 11: 457–462.

    Article  Google Scholar 

  • Kowall, N.W., Ferrante, R.J., and Martin, J.B., 1987, Patterns of cell loss in Huntington’s disease, Trends Neurosci. 10: 24–29.

    Article  Google Scholar 

  • Lo, M.M., Strittmatter, S.M., and Snyder, S.H., 1982, Physical separation and characterization of two types of benzodiazepine receptors, Proc. Natl. Acad. Sci. U.S.A. 79: 680–684.

    Article  PubMed  CAS  Google Scholar 

  • Lüddens, H., and Wisden, W., 1991, Function and pharmacology of multiple GABAA receptor subunits, Trends Pharmac. Sci. 12: 49–51.

    Article  Google Scholar 

  • Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., and Becerril, J.J., 1987, Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s Disease, N. Eng. J. Med. 316: 831–834.

    Article  CAS  Google Scholar 

  • Martin, J.B., and Gusella, J.F., 1986, Huntington’s disease, Pathogenesis and management, New Eng. J. Med. 315: 1267–1276.

    Article  PubMed  CAS  Google Scholar 

  • Möhler, H., Malherbe, P., Draguhn, A., and Richards, J.G., 1990, GABAAreceptors: structural requirements and sites of gene expression in mammalian brain, Neurochem. Res. 15: 199–207.

    Article  PubMed  Google Scholar 

  • Möhler, H., Malherbe, P., Richards, J.G., Persohn, E., Benke, D., Barth, M., Rhyner, T., and Sigel, E., 1991, GABAA-receptor gene expression and regulation, in: “Neurotransmitter Regulation of Gene Transcription, Fidia Research Foundation Series, Vol. 7,” E. Coata, Ed., Thieme Publishers, New York, pp. 111–124.

    Google Scholar 

  • Morton, A.J., Nicholson, L.F.B., and Faull, R.L.M., 1992, Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington’s disease, Neurosci. 53: 159–168.

    Article  Google Scholar 

  • Myers, R.H., Vonsattel, J.P., Paskevich, P.A, Kiely, D.K., Stevens, T.J., Cupples, L.A., Richardson, E.P., and Bird, E.D., 1991, Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus, J. Neuropath. exp. Neurol. 50: 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, J.M.M., Penney, J.B., Shoulson, I., and Young, A.B., 1986, Inhomogeneities of striatal receptor binding in Huntington’s disease, Neurology 36: 342.

    Google Scholar 

  • Olsen, R.W., and Tobin, A.J., 1990, Molecular biology of GABAAreceptors, FASEB J. 4: 1469–1480.

    PubMed  CAS  Google Scholar 

  • Pan, H.S., Penney, J.B., and Young, A.B., 1984, Characterization of benzodiazepine receptor changes in substantia nigra, globus pallidus and entopeduncular nucleus after striatal lesions, J. Pharmac. exp. Ther. 230: 768–775.

    CAS  Google Scholar 

  • Penney, J.B., and Young, A.B., 1982, Quantitative autoradiography of neurotransmitter receptors in Huntington disease, Neurology 32: 1391–1395.

    Article  PubMed  Google Scholar 

  • Penney. J.B., and Pan, H.S., 1986, Quantitative autoradiography of GABA and benzodiazepine binding in studies of mammalian and human basal ganglia function, in: “Quantitative Receptor Autoradiography,” C.A. Boast, E.W. Snowhill and C.A. Altar, eds., Alan R. Liss, New York, pp. 29–52.

    Google Scholar 

  • Pritchett, D.B., Lüddens, H., and Seeburg, P.H., 1989, Type I and Ttype II GABAA benzodiazepine receptors produced in transfected cells, Science 245: 1389–1392.

    Article  PubMed  CAS  Google Scholar 

  • Reisine, T.D., Wastek, G.J., Speth, R.C., Bird, E.D., and Yamamura, H.I., 1979, Alterations in the benzodiazepine receptor of Huntington’s diseased human brain, Brain Res. 165: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Reisine, T.D., Overstreet, D., Gale, K., Rossor, M., Iversen, L., and Yamamura, H.I., 1980, Benzodiazepine receptors: the effect of GABA on their characteristics in human brain and their alteration in Huntington’s disease, Brain Res. 199: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Richards, J.G., Möhler, H., and Haefely, W., 1986, Mapping benzodiazepine receptors in the CNS by radiohistochemistry and immunohistochemistry, in: “Neurohistochemistry: Modern Methods and Applications,” P. Panula, H. Paivarinta and S. Soinila, eds., Alan R. Liss, New York, pp. 629–677.

    Google Scholar 

  • Richards, J.G., Möhler, H., and Haefely, W., 1987a, Benzodiazepine receptors and their ligands. in: “Mechanisms of Drug Action,” edG.N. Woodruff, ed., Macmillan, London, pp. 131–176.

    Google Scholar 

  • Richards, J.G., Schoch, P., Häring, P., Takacs, B, and Möhler, H., 1987b, Resolving 6 GABAA/benzodiazepine receptors: cellular and subcellular localization in the C.N.S. with monoclonal antibodies, J. Neurosci. 7: 1866–1886.

    PubMed  CAS  Google Scholar 

  • Schoch, P., Richards, J.G., Häring, P., Takacs, B., Stähli, C., Staehelin, T., Haefely, W., and Möhler, H., 1985, Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies, Nature 314: 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Whetsell, W.O., and Mangano, R.M., 1983, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science 219: 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Seto-Ohshima, A., Emson, P.C., Lawson, E., Mountjoy, C.Q., and Carrasco, L.H., 1988, Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease, Lancet 1: 1252–1255.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, D.D., Robbins, R.J., Naftolin, F., Phil, D., Marek, K.L., Vollmer, T., Leranth, C., Roth, R.H., Price, L.H., Gjedde, A., Bunney, B.S., Sass, K.J., Elsworth, J.D., Kier, E.L., Makuch, R., Hoffer, P.B., and Redmond, D.E., 1992, Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease, N. Eng. J. Med. 327: 1541–1548.

    Article  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group, 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell 72: 971–983.

    Article  Google Scholar 

  • Vonsattel, J-P., Myers, R.H., Stevens, T.J., Ferrante, R.J., Bird, E.D., and Richardson, E.P., 1985, Neuropathological classification of Huntington’s disease, J. Neuropath. exp. Neurol. 44: 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Walker, F.O., Young, A.B., Penney, J.B., Dovorini-Zis, K., and Shoulson, I., 1984, Benzodiazepine and GABA receptors in early Huntington’s disease, Neurology 34: 1237–1240.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse, P.J., Trifiletti, R.R., Jones, B.E., Folstein, S., Price, D.L., Snyder, S.H., and Kuhar, M.J., 1985, Neurotransmitter receptor alterations in Huntington’s disease: autoradiographic and homogenate studies with special reference to benzodiazepine receptor complexes, Ann. Neurol. 18: 202–210.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., 1992, Anatomy and connectivity of intrastriatal striatal transplants, Prog. Neurobiol. 38: 611–639.

    Article  PubMed  CAS  Google Scholar 

  • Widner, H., Tetrud, J., Rehncrona, S., Snow, B, Brundin, P., Gustavii, B, Björklund, A., Lindvall, O., and Langston, J.W., 1992, Bilateral fetal mesencephalic grafting in two patients with Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), N. Eng. J. Med. 327: 1556–1563.

    Article  CAS  Google Scholar 

  • Wisden, W., Morris, B.J., Darlison, M.G., Hunt, S.P., and Barnard, E.A., 1989, Localization of GABAA receptor α subunit mRNAs in relation to receptor subtypes, Molec. Brain Res. 5: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Young, W., Niehoff, D.L. Kuhar, M.J., Beer, B and Lippa, A.S., 1981, Multiple benzodiazepine receptor localization by light microscopie radiohistochemistry, J. Pharmac. exp. Ther. 216: 425–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faull, R.L.M., Waldvogel, H.J., Nicholson, L.F.B., Williams, M.N., Dragunow, M. (1995). Huntington’s Disease and Neural Transplantation: GABAA Receptor Changes in the Basal Ganglia in Huntington’s Disease in the Human Brain and in the Quinolinic Acid Lesioned Rat Model of the Disease Following Fetal Neuron Transplants. In: Tracey, D.J., Paxinos, G., Stone, J. (eds) Neurotransmitters in the Human Brain. Advances in Behavioral Biology, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1853-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1853-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5752-0

  • Online ISBN: 978-1-4615-1853-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics