Huntington’s Disease and Neural Transplantation: GABAA Receptor Changes in the Basal Ganglia in Huntington’s Disease in the Human Brain and in the Quinolinic Acid Lesioned Rat Model of the Disease Following Fetal Neuron Transplants

  • R. L. M. Faull
  • H. J. Waldvogel
  • L. F. B. Nicholson
  • M. N. Williams
  • M. Dragunow
Part of the Advances in Behavioral Biology book series (ABBI, volume 43)

Abstract

A particularly exciting and novel development in the treatment of neurological diseases is the suggestion from both animal and human studies that neural grafts may provide an effective means of treating chemospecific neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease etc. In recent years neural grafting in degenerative diseases of the nervous system has emerged from the realm of the theoretical to that of the practical. In Parkinson’s disease, autografts of adrenal medulla cells to the caudate nucleus of the brain have been shown to produce improvements in the clinical signs of the disease (Madrazo et al., 1987) and patients with idiopathic and MPTP induced Parkinson’s disease have shown improvements following human fetal neural transplants (Freed et al., 1992; Spencer et al., 1992; Widner et al., 1992). Also, neural grafts of embryonic striatal neurons have been shown to partially restore some neurochemical deficits and to ameliorate behavioural and locomotor impairment in animal models of Huntington’s disease (Isacson et al., 1984, 1985, 1986; Hantraye et al., 1992). These findings and others have led to the Suggestion that neural transplantation may offer the prospect of a viable strategy for structural repair in Huntington’s disease (Dunnett and Svendsen, 1993).

Keywords

Dopamine Dementia Neurol Glutaraldehyde Haloperidol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F, Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid, Nature 321: 168–171.PubMedCrossRefGoogle Scholar
  2. Beal, M.F, Kowall, N.W., Swartz, K.J., Ferrante, R.J., and Martin, J.B., 1989, Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions, Synapse 3: 38–47.PubMedCrossRefGoogle Scholar
  3. Bjorklund, A., Stenevi, U., Schmidt, R.H., Dunnett, S.B., and Gage, RH., 1983, Intracerebral grafting of neuronal cell suspensions 1. Introductions and general methods of preparation, Acta Physiol Scand. Suppl. 552: 1–7.Google Scholar
  4. Boegman, R.J., Smith, Y., and Parent, A., 1987, Quinolinic acid does not spare striatal neuropeptide Y-immunoreactive neurons, Brain Res. 415: 178–182.PubMedCrossRefGoogle Scholar
  5. Davies, S.W., and Roberts, P.J., 1987, No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid, Nature 327: 326–329.PubMedCrossRefGoogle Scholar
  6. Dawbarn, D., De Quidt, M.E., and Emson, P.C., 1985, Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease, Brain Res. 340: 251–260.PubMedCrossRefGoogle Scholar
  7. DiFiglia, M., 1990, Excitotoxic injury of the neostriatum: a model for Huntington’s disease, Trends Neurosci. 13: 286–289.PubMedCrossRefGoogle Scholar
  8. Dragunow, M., Faull, R.L.M., Waldvogel, H.J., Williams, M.N., and Leah, J., 1991, Elevated expression of jun and fos-related proteins in transplanted striatal neurons, Brain Res. 558: 321–324.PubMedCrossRefGoogle Scholar
  9. Dragunow, M., Williams, M., and Faull, R.L.M., 1990, Haloperidol induces Fos and related molecules in intrastriatal grafts derived from fetal striatal primordia, Brain Res. 530: 309–311.PubMedCrossRefGoogle Scholar
  10. Dunnett, S.B., and Svendsen, C.N., 1993, Huntington’s disease: animal models and transplantation repair, Current Opinion in Neurobiology 3: 790–796.PubMedCrossRefGoogle Scholar
  11. Ellison, D.W., Beal, M.F., Mazurek, M.F, Malloy, J.R., Bird, E.D., and Martin, J.B., 1987, Amino acid neurotransmitter abnormalities in Huntington’s disease and the quinolinic acid animal model of Huntington’s disease, Brain 110: 1657–1673.PubMedCrossRefGoogle Scholar
  12. Faull, R.L.M., Dragunow, M., and Villiger, J.W., 1989, The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment, Brain Res. 488: 381–386.PubMedCrossRefGoogle Scholar
  13. Faull, R.L.M., and Villiger, J.W., 1986, Heterogeneous distribution of benzodiazepine receptors in the human striatum: a quantitative autoradiographic study comparing the pattern of receptor labelling with the distribution of acetylcholinesterase staining, Brain Res. 381: 153–158.PubMedCrossRefGoogle Scholar
  14. Faull, R.L.M., and Villiger, J.W., 1988, Multiple benzodiazepine receptors in the human basal ganglia: a detailed pharmacological and anatomical study, Neurosci. 24: 433–451.CrossRefGoogle Scholar
  15. Faull, R.L.M., Waldvogel, H.J., Nicholson, L.F.B., and Synek, B.J.L., 1993, The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington’s disease and in the quinolinic acid-lesioned rat, Prog. Brain Res. 99: 105–123.PubMedCrossRefGoogle Scholar
  16. Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, E.P., Bird, E.D., and Martin, J.B., 1985, Selective sparing of a class of striatal neurons in Huntington’s disease, Science 230: 561–563.PubMedCrossRefGoogle Scholar
  17. Ferrante, R.J., Kowall, N.W., Beal, M.F., Martin, J.B., Bird, E.D., and Richardson E.P., 1987, Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease, J. Neuropath, exp. Neurol. 46: 12–27.CrossRefGoogle Scholar
  18. Freed, C.R., Breeze, R.E., Rosenberg, N.L., Schneck, S.A, Kriek, E., Qi, J.-X., Lone, T., Zhang, Y.-B., Snyder, J.A., Wells, Ramig, L.O., Thompson, L., Mazziotta, J.C., Huang, S.C., Grafton, S,T., Brooks, D., Sawle, G., Schroter, G., and Ansari, A.A., 1992, Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease, N. Eng. J. Med. 327: 1549–1555.CrossRefGoogle Scholar
  19. Fritschy, J.-M., Benke, D., Mertens, S., Oertel, W.H., Bachi, T., and Möhler, H., 1992, Five subtypes of type A γ-aminobutyric acid receptors identified in neurons by double and triple imunofluorescence staining with subunit-specific antibodies, Proc. Natl. Acad. Sci. U.S.A. 89: 6726–6730.PubMedCrossRefGoogle Scholar
  20. Graveland, G.A., Williams, R.S., and DiFiglia, M., 1985, Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease, Science 227: 770–773.PubMedCrossRefGoogle Scholar
  21. Graybiel, AM., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci. 13: 244–254.PubMedCrossRefGoogle Scholar
  22. Hantraye, P., Riche, D., Maziere, M., and Isacson, O., 1992, Intrastriatal transplantation of crossspecies fetal striatal cells reduces abnormal movements in a primate model of Huntington disease, Proc. Natl. Acad. Sci. U.S.A. 89: 4187–4191.PubMedCrossRefGoogle Scholar
  23. Häring, P., Stähli, C., Schoch, P., Takács, B. Staehelin, T., and Möhler, H., 1985, Monoclonal antibodies reveal structural homogeneity of γ-aminobutyric acid/benzodiazepine receptors in different brain areas, Proc. Natl. Acad. Sci. U.S.A. 82: 4837–4841.PubMedCrossRefGoogle Scholar
  24. Hayden, M.R., 1981, Huntington’s Chorea, Springer-Verlag, New York, 192pp.CrossRefGoogle Scholar
  25. Houser, C.R., Olsen, R.W., Richards, J.G., and Möhler, H., 1988, Immunohistochemical localization of benzodiazepine/GABAA receptors in the human hippocampal formation, J. Neurosci. 8: 1370–1383.PubMedGoogle Scholar
  26. Isacson, O., Brundin, P., Gaye, F.H., and Bjorklund, A., 1985, Neural grafting in a rat model of Huntington’s Disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting, Neurosci. 16: 799–817.CrossRefGoogle Scholar
  27. Isacson, O., Brundin, P., Kelly, P.A.T., Gage, F.H., and Bjorklund, A., 1984, Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum, Nature 311: 458–460.PubMedCrossRefGoogle Scholar
  28. Isacson, O., Dunnett, S.B., and Bjorklund, A., 1986, Graft-induced behavioral recovery in an animal model of Huntington disease, Proc. Natl. Acad. Sci. 83: 2728–2732.PubMedCrossRefGoogle Scholar
  29. Kiepner, C.A., Lippa, A., Benson, D.I., Sano, M.C., and Beer, B., 1979, Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors, Pharmac. Biochem. Behav. 11: 457–462.CrossRefGoogle Scholar
  30. Kowall, N.W., Ferrante, R.J., and Martin, J.B., 1987, Patterns of cell loss in Huntington’s disease, Trends Neurosci. 10: 24–29.CrossRefGoogle Scholar
  31. Lo, M.M., Strittmatter, S.M., and Snyder, S.H., 1982, Physical separation and characterization of two types of benzodiazepine receptors, Proc. Natl. Acad. Sci. U.S.A. 79: 680–684.PubMedCrossRefGoogle Scholar
  32. Lüddens, H., and Wisden, W., 1991, Function and pharmacology of multiple GABAA receptor subunits, Trends Pharmac. Sci. 12: 49–51.CrossRefGoogle Scholar
  33. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., and Becerril, J.J., 1987, Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s Disease, N. Eng. J. Med. 316: 831–834.CrossRefGoogle Scholar
  34. Martin, J.B., and Gusella, J.F., 1986, Huntington’s disease, Pathogenesis and management, New Eng. J. Med. 315: 1267–1276.PubMedCrossRefGoogle Scholar
  35. Möhler, H., Malherbe, P., Draguhn, A., and Richards, J.G., 1990, GABAAreceptors: structural requirements and sites of gene expression in mammalian brain, Neurochem. Res. 15: 199–207.PubMedCrossRefGoogle Scholar
  36. Möhler, H., Malherbe, P., Richards, J.G., Persohn, E., Benke, D., Barth, M., Rhyner, T., and Sigel, E., 1991, GABAA-receptor gene expression and regulation, in: “Neurotransmitter Regulation of Gene Transcription, Fidia Research Foundation Series, Vol. 7,” E. Coata, Ed., Thieme Publishers, New York, pp. 111–124.Google Scholar
  37. Morton, A.J., Nicholson, L.F.B., and Faull, R.L.M., 1992, Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington’s disease, Neurosci. 53: 159–168.CrossRefGoogle Scholar
  38. Myers, R.H., Vonsattel, J.P., Paskevich, P.A, Kiely, D.K., Stevens, T.J., Cupples, L.A., Richardson, E.P., and Bird, E.D., 1991, Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus, J. Neuropath. exp. Neurol. 50: 729–742.PubMedCrossRefGoogle Scholar
  39. Olsen, J.M.M., Penney, J.B., Shoulson, I., and Young, A.B., 1986, Inhomogeneities of striatal receptor binding in Huntington’s disease, Neurology 36: 342.Google Scholar
  40. Olsen, R.W., and Tobin, A.J., 1990, Molecular biology of GABAAreceptors, FASEB J. 4: 1469–1480.PubMedGoogle Scholar
  41. Pan, H.S., Penney, J.B., and Young, A.B., 1984, Characterization of benzodiazepine receptor changes in substantia nigra, globus pallidus and entopeduncular nucleus after striatal lesions, J. Pharmac. exp. Ther. 230: 768–775.Google Scholar
  42. Penney, J.B., and Young, A.B., 1982, Quantitative autoradiography of neurotransmitter receptors in Huntington disease, Neurology 32: 1391–1395.PubMedCrossRefGoogle Scholar
  43. Penney. J.B., and Pan, H.S., 1986, Quantitative autoradiography of GABA and benzodiazepine binding in studies of mammalian and human basal ganglia function, in: “Quantitative Receptor Autoradiography,” C.A. Boast, E.W. Snowhill and C.A. Altar, eds., Alan R. Liss, New York, pp. 29–52.Google Scholar
  44. Pritchett, D.B., Lüddens, H., and Seeburg, P.H., 1989, Type I and Ttype II GABAA benzodiazepine receptors produced in transfected cells, Science 245: 1389–1392.PubMedCrossRefGoogle Scholar
  45. Reisine, T.D., Wastek, G.J., Speth, R.C., Bird, E.D., and Yamamura, H.I., 1979, Alterations in the benzodiazepine receptor of Huntington’s diseased human brain, Brain Res. 165: 183–187.PubMedCrossRefGoogle Scholar
  46. Reisine, T.D., Overstreet, D., Gale, K., Rossor, M., Iversen, L., and Yamamura, H.I., 1980, Benzodiazepine receptors: the effect of GABA on their characteristics in human brain and their alteration in Huntington’s disease, Brain Res. 199: 79–88.PubMedCrossRefGoogle Scholar
  47. Richards, J.G., Möhler, H., and Haefely, W., 1986, Mapping benzodiazepine receptors in the CNS by radiohistochemistry and immunohistochemistry, in: “Neurohistochemistry: Modern Methods and Applications,” P. Panula, H. Paivarinta and S. Soinila, eds., Alan R. Liss, New York, pp. 629–677.Google Scholar
  48. Richards, J.G., Möhler, H., and Haefely, W., 1987a, Benzodiazepine receptors and their ligands. in: “Mechanisms of Drug Action,” edG.N. Woodruff, ed., Macmillan, London, pp. 131–176.Google Scholar
  49. Richards, J.G., Schoch, P., Häring, P., Takacs, B, and Möhler, H., 1987b, Resolving 6 GABAA/benzodiazepine receptors: cellular and subcellular localization in the C.N.S. with monoclonal antibodies, J. Neurosci. 7: 1866–1886.PubMedGoogle Scholar
  50. Schoch, P., Richards, J.G., Häring, P., Takacs, B., Stähli, C., Staehelin, T., Haefely, W., and Möhler, H., 1985, Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies, Nature 314: 168–171.PubMedCrossRefGoogle Scholar
  51. Schwarcz, R., Whetsell, W.O., and Mangano, R.M., 1983, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science 219: 316–318.PubMedCrossRefGoogle Scholar
  52. Seto-Ohshima, A., Emson, P.C., Lawson, E., Mountjoy, C.Q., and Carrasco, L.H., 1988, Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease, Lancet 1: 1252–1255.PubMedCrossRefGoogle Scholar
  53. Spencer, D.D., Robbins, R.J., Naftolin, F., Phil, D., Marek, K.L., Vollmer, T., Leranth, C., Roth, R.H., Price, L.H., Gjedde, A., Bunney, B.S., Sass, K.J., Elsworth, J.D., Kier, E.L., Makuch, R., Hoffer, P.B., and Redmond, D.E., 1992, Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease, N. Eng. J. Med. 327: 1541–1548.CrossRefGoogle Scholar
  54. The Huntington’s Disease Collaborative Research Group, 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell 72: 971–983.CrossRefGoogle Scholar
  55. Vonsattel, J-P., Myers, R.H., Stevens, T.J., Ferrante, R.J., Bird, E.D., and Richardson, E.P., 1985, Neuropathological classification of Huntington’s disease, J. Neuropath. exp. Neurol. 44: 559–577.PubMedCrossRefGoogle Scholar
  56. Walker, F.O., Young, A.B., Penney, J.B., Dovorini-Zis, K., and Shoulson, I., 1984, Benzodiazepine and GABA receptors in early Huntington’s disease, Neurology 34: 1237–1240.PubMedCrossRefGoogle Scholar
  57. Whitehouse, P.J., Trifiletti, R.R., Jones, B.E., Folstein, S., Price, D.L., Snyder, S.H., and Kuhar, M.J., 1985, Neurotransmitter receptor alterations in Huntington’s disease: autoradiographic and homogenate studies with special reference to benzodiazepine receptor complexes, Ann. Neurol. 18: 202–210.PubMedCrossRefGoogle Scholar
  58. Wictorin, K., 1992, Anatomy and connectivity of intrastriatal striatal transplants, Prog. Neurobiol. 38: 611–639.PubMedCrossRefGoogle Scholar
  59. Widner, H., Tetrud, J., Rehncrona, S., Snow, B, Brundin, P., Gustavii, B, Björklund, A., Lindvall, O., and Langston, J.W., 1992, Bilateral fetal mesencephalic grafting in two patients with Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), N. Eng. J. Med. 327: 1556–1563.CrossRefGoogle Scholar
  60. Wisden, W., Morris, B.J., Darlison, M.G., Hunt, S.P., and Barnard, E.A., 1989, Localization of GABAA receptor α subunit mRNAs in relation to receptor subtypes, Molec. Brain Res. 5: 305–310.PubMedCrossRefGoogle Scholar
  61. Young, W., Niehoff, D.L. Kuhar, M.J., Beer, B and Lippa, A.S., 1981, Multiple benzodiazepine receptor localization by light microscopie radiohistochemistry, J. Pharmac. exp. Ther. 216: 425–430.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. L. M. Faull
    • 1
  • H. J. Waldvogel
    • 1
  • L. F. B. Nicholson
    • 1
  • M. N. Williams
    • 1
  • M. Dragunow
    • 2
  1. 1.Departments of Anatomy and School of MedicineUniversity of AucklandAucklandNew Zealand
  2. 2.Departments of Pharmacology and School of MedicineUniversity of AucklandAucklandNew Zealand

Personalised recommendations