Skip to main content

Plant Molecular Systematics

Inferences of Phylogeny and Evolutionary Processes

  • Chapter

Part of the book series: Evolutionary Biology ((EBIO,volume 28))

Abstract

Plant systematics has been revolutionized during the past decade by the application of molecular techniques to questions of evolutionary patterns and processes. Analysis of variation in the chloroplast genome in particular and, to a lesser extent, in segments of the nuclear genome has vastly improved our understanding of plant phylogeny at all taxonomic levels. The phylogenetic patterns have, in turn, led to inferences of evolutionary processes and spurred hypotheses of adaptive radiation and character evolution. Consequently, systematics has emerged as a vigorous branch of evolutionary biology, providing the requisite historical perspective for comparative biology and the phylogenetic framework for developing hypotheses of evolutionary processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, V. A., Williams, S. E., and Chase, M. W., 1992, Carnivorous plants: Phylogeny and structural evolution, Science 257:1491–1495.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, E., 1949, Introgressive Hybridization, Wiley, New York.

    Google Scholar 

  • Arber, E. A. N., and Parkin, J., 1907, On the origin of angiosperms, J. Linn. Soc. Bot. 38:29–80.

    Article  Google Scholar 

  • Atchison, B. A., Whitfield, P. R., and Bottomley, W., 1976, Comparison of chloroplast DNAs by specific fragmentation with EcoRI endonuclease, Mol. Gen. Genet. 148:263–269.

    Article  CAS  Google Scholar 

  • Bailey, I. W., 1957, The potentialities and limitations of wood anatomy in the study of phylogeny and classification of angiosperms, J. Arnold Arbor. Harv. Univ. 38:243–254.

    Google Scholar 

  • Baldwin, B. G., 1992, Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae, Mol. Phylogenet. Evol. 1:3–16.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, B. G., 1993, Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: Chromosomal and morphological evolution reexamined, Am. J. Bot. 80:222–238.

    Article  CAS  Google Scholar 

  • Baldwin, B. G., Kyhos, D. W., and Dvorak, J., 1990, Chloroplast DNA evolution and adaptive radiation in the Hawaiian silversword alliance (Madiinae, Asteraceae), Ann. Mo. Bot. Gard. 77:96–109.

    Article  Google Scholar 

  • Bawa, K. S., 1980, Evolution of dioecy in flowering plants, Annu. Rev. Ecol. Syst. 11:15–39.

    Article  Google Scholar 

  • Behnke, H.-D., 1981, Sieve-element characters, Nord. J. Bot. 1:381–400.

    Article  Google Scholar 

  • Behnke, H.-D., Pop, L., and Sivarajan, V. V., 1983, Sieve-element plastids of Caryophyllales: Additional investigations with special reference to the Caryophyllaceae and Molluginaceae, Plant Syst. Evol. 142:109–115.

    Article  Google Scholar 

  • Bentham, G., and Hooker, J. D., 1862, Genera Plantarum, Vol. I, L. Reeve & Co., London.

    Google Scholar 

  • Bessey, C. E., 1915, The phylogenetic taxonomy of flowering plants, Ann. Mo. Bot. Gard. 2:109–164.

    Article  Google Scholar 

  • Bohm, B. A., 1987, Intraspecific flavonoid variation, Bot. Rev. 53:197–279.

    Article  Google Scholar 

  • Britten, R. J., 1986, Rates of DNA sequence evolution differ between taxonomic groups, Science 231:1393–1398.

    Article  PubMed  CAS  Google Scholar 

  • Brunsfeld, S. J., Soltis, D. E., and Soltis, P. S., 1992, Evolutionary patterns and processes in Salix section Longifoliae: Evidence from chloroplast DNA, Syst. Bot. 17:239–256.

    Article  Google Scholar 

  • Brunsfeld, S. J., Soltis, P. S., Soltis, D. E., Gadek, P. A., Quinn, C. J., Strenge, D. D., and Ranker, T. A., 1994, Phylogenetic relationships among genera of the conifer families Taxodiaceae and Cupressaceae: Evidence from rbcL sequences, Syst. Bot. 19:253–262.

    Article  Google Scholar 

  • Candolle, A. P. de, 1824, Prodromus Systematis Naturalis Regni Vegetabilis, Pars I, Truettel & Würtz, Paris.

    Google Scholar 

  • Challice, J. S., 1974, Rosaceae chemotaxonomy and the origins of the Pomoideae, Bot. J. Linn. Soc. 69:239–259.

    Article  Google Scholar 

  • Challice, J. S., 1981, Chemotaxonomic studies in the family Rosaceae and the evolutionary origins of the subfamily Maloideae, Preslia 53:289–304.

    Google Scholar 

  • Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y., Plunkett, G. M., Soltis, P. S., Swensen, S., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H., Jr., Graham, S. W., Barrett, S. C. H., Dayanandan, S., and Albert, V. A., 1993, Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL, Ann. Mo. Bot. Gard. 80:528–580.

    Article  Google Scholar 

  • Conti, E., Fischbach, A., and Sytsma, K. J., 1993, Tribal relationships in Onagraceae: Implications from rbcL sequence data, Ann. Mo. Bot. Gard. 80:672–685.

    Article  Google Scholar 

  • Corriveau, J. L., and Coleman, A. W., 1988, Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species, Am. J. Bot. 75:1443–1458.

    Article  Google Scholar 

  • Crane, P. R., 1985, Phylogenetic analysis of seed plants and the origin of the angiosperms, Ann. Mo. Bot. Gard. 72:716–793.

    Article  Google Scholar 

  • Crawford, D. J., and Smith, E. B., 1982, Allozyme variation in Coreopsis nuecensoides and C. nuecensis (Compositae), a progenitor-derivative species pair, Evolution 36:379–386.

    Article  Google Scholar 

  • Crawford, D. J., Palmer, J. D., and Kobayashi, M., 1990, Chloroplast DNA restriction site variation and the phylogeny of Coreopsis section Coreopsis (Asteraceae), Am. J. Bot. 77:552–558.

    Article  CAS  Google Scholar 

  • Crawford, D. J., Palmer, J. D., and Kobayashi, M., 1991, Chloroplast DNA restriction site variation, phylogenetic relationships and character evolution among sections of North American Coreopsis (Asteraceae), Syst. Bot. 16:211–224.

    Article  Google Scholar 

  • Crawford, D. J., Palmer, J. D., and Kobayashi, M., 1992, Chloroplast DNA restriction site variation and the evolution of the annual habit in North American Coreopsis (Asteraceae), in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 280–294, Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Cronquist, A., 1981, An Integrated System of Classification of Flowering Plants, Columbia University Press, New York.

    Google Scholar 

  • Dahlgren, G., 1989, The last Dahlgrenogram system of classification of the dicotyledons, in: Plant Taxonomy, Phytogeography and Related Subjects (K. Tan, ed.), pp. 249–260, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Dahlgren, R., 1975, A system of classification of the angiosperms to be used to demonstrate the distribution of characters, Bot. Not. 128:119–147.

    Google Scholar 

  • Dahlgren, R., 1980, A revised system of classification of the angiosperms, Bot. J. Linn. Soc. 80:91–124.

    Article  Google Scholar 

  • Dahlgren, R., 1983, General aspects of angiosperm evolution and macrosystematics, Nord. J. Bot. 3:119–149.

    Article  Google Scholar 

  • Dahlgren, R., Jensen, S. R., and Yeo, P. F., 1981, A revised classification of the angiosperms with comments on correlation between chemical and other characters, in: Phytochemistry and Angiosperm Phylogeny (D. A. Young and D. S. Siegler, eds.), pp. 149–199, Praeger, New York.

    Google Scholar 

  • Dahlgren, R., Clifford, H. T., and Yeo, P. F., 1985, The families of the Monocotyledons: Structure, evolution, taxonomy, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • D’Arcy, W. G., 1991, The Solanaceae since 1976, with a review of its biogeography, in: Solanaceae 3: Taxonomy-Chemistry-Evolution (J. G. Hawkes, R. N. Lester, M. Nee, and N. Estrada, eds.), Royal Botanic Garden, Kew.

    Google Scholar 

  • Davis, J. I., and Nixon, K. C., 1993, Populations, genetic variation, and the delimitation of phylogenetic species, Syst. Biol. 41:421–435.

    Google Scholar 

  • DeLong, E. F., Frankel, R. B., and Bazylinksi, D. A., 1993, Multiple evolutionary origins of magnetotaxis in bacteria, Science 259:803–805.

    Article  PubMed  CAS  Google Scholar 

  • DeQueiroz, K., and Donoghue, M. J., 1988, Phylogenetic systematics and the species problem, Cladistics 4:317–318.

    Article  Google Scholar 

  • Doebley, J. F., 1989, Molecular evidence for a missing wild relative of maize and the introgression of its chloroplast genome into Zea perennis, Evolution 43:1555–1558.

    Article  CAS  Google Scholar 

  • Doebley, J. F., Renfroe, W., and Blanton, A., 1987, Restriction site variation in the Zea chloroplast genome, Genetics 117:139–147.

    PubMed  CAS  Google Scholar 

  • Donoghue, M. J., 1985, A critique of the biological species concept and recommendations for a phylogenetic alternative, Bryologist 88:172–181.

    Article  Google Scholar 

  • Donoghue, M. J., 1989, Phylogenies and the analysis of evolutionary sequences, with examples from seed plants, Evolution 43:1137–1156.

    Article  Google Scholar 

  • Donoghue, M. J., and Doyle, J. A., 1989, Phylogenetic studies of seed plants and angiosperms based on morphological characters, in: The Hierarchy of Life: Molecules and Morphology in Phylogenetic Analysis (B. Fernholm, K. Bremer, and H. Jörnvall, eds.), pp. 181–193, Elsevier, Amsterdam.

    Google Scholar 

  • Donoghue, M. J., and Sanderson, M. J., 1992, The suitability of molecular and morphological evidence in reconstructing plant phylogeny, in: Molecular Systematics of Plants (D. E. Soltis, P. S. Soltis, and J. J. Doyle, eds.), Chapman & Hall, New York.

    Google Scholar 

  • Dorado, O., Rieseberg, L. H., and Arias, D., 1991, Chloroplast DNA introgression and the invasion of southern California by sunflowers, Evolution 43:566–572.

    Google Scholar 

  • Downie, S. R., Olmstead, R. G., Zurawski, G., Soltis, D. E., Soltis, P. S., Watson, J. C., and Palmer, J. D., 1991, Loss of the chloroplast DNA rpl2 intron demarcates six lineages of dicotyledons: Molecular and phylogenetic implications, Evolution 45:1245–1259.

    Article  CAS  Google Scholar 

  • Doyle, J. A., and Donoghue, M. J., 1986, Seed plant phylogeny and the origin of the angiosperms: An experimental cladistic approach, Bot. Rev. 52:321–431.

    Article  Google Scholar 

  • Doyle, J. J., 1991, Evolution of higher plant glutamine synthetase genes: Tissue specificity as a criterion for predicting orthology, Mol. Biol. Evol. 8:366–377.

    CAS  Google Scholar 

  • Doyle, J. J., 1992, Gene trees and species trees: Molecular systematics as one-character taxonomy, Syst. Bot. 17:144–163.

    Article  Google Scholar 

  • Doyle, J. J., Grace, J., and Brown, A. H. D., 1990, Reproductively isolated polyploid races of Glycine tabacina (Leguminosae) had different chloroplast genome donors, Syst. Bot. 15:173–181.

    Article  Google Scholar 

  • Duvall, M. R., Clegg, M. T., Chase, M. W., Clark, W. D., Kress, W. J., Hills, H. G., Eguiarte, L. E., Smith, J. F., Gaut, B. S., Zimmer, E. A., and Learn, G. H., 1993, Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data, Ann. Mo. Bot. Gard. 80:607–619.

    Article  Google Scholar 

  • Easteal, S., 1985, Generation time and the rate of molecular evolution, Mol. Biol. Evol. 2:450–453.

    PubMed  CAS  Google Scholar 

  • Eckenwalder, J. E., 1976, Re-evaluation of Cupressaceae and Taxodiaceae: A proposed merger, Madroño 23:237–300.

    Google Scholar 

  • Engler, A., 1890, Saxifragaceae, in: Die Natürlichen Pflanzenfamilien (A. Engler and K. Prantl, eds.), Vol. III, pp. 42–93, Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Engler, A., 1928, Saxifragaceae, in: Die Natürlichen Pflanzenfamilien, 2nd ed. (A. Engler and K. Prantl, eds.), Vol. 18a, pp. 74–226, Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Engler, A., and Prantl, K., 1891, Die Natürlichen Pflanzenfamilien, Teil 3, Abteilung 2, Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Erbar, C., 1988, Early development patterns in flowers and their value for systematics, in: Aspects of Floral Development (P. Leins, S. C. Tucker, and P. K. Endress, eds.), pp. 7–23, J. Cramer, Berlin.

    Google Scholar 

  • Erbar, C., 1991, Sympetaly—A systematic character? Bot. Jahrb. Syst. 112:417–451.

    Google Scholar 

  • Fedorov, A. (ed.), 1969, Chromosome Numbers of Flowering Plants, Academy of Sciences USSR, Leningrad.

    Google Scholar 

  • Felsenstein, J., 1978, Cases in which parsimony or compatibility methods will be positively misleading, Syst. Zool. 27:401–410.

    Article  Google Scholar 

  • Gadek, P. A., and Quinn, C. J., 1993, A preliminary analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences, Ann. Mo. Bot. Gard. 80:581–586.

    Article  Google Scholar 

  • Gallez, G. P., and Gottlieb, L. D., 1982, Genetic evidence for the hybrid origin of the diploid plant Stephanomeria diegensis, Evolution 36:1158–1167.

    Article  Google Scholar 

  • Gaut, B. S., Muse, S. V., Clark, W. D., and Clegg, M. T., 1992, Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants, J. Mol. Evol. 35:292–303.

    Article  PubMed  CAS  Google Scholar 

  • Giannasi, D. E., Zurawski, G., Learn, G., and Clegg, M. T., 1992, Evolutionary relationships of the Caryophyllidae based on comparative rbcL sequences, Syst. Bot. 17:1–15.

    Article  Google Scholar 

  • Givnish, T. J., Sytsma, K. J., Smith, J. F., and Hahn, W. J., 1994, Thorns and heterophylly in Cyanea adapted to extinct avian browsers on Hawaii, Proc. Natl Acad. Sci. USA 91:2810–2814.

    Article  PubMed  CAS  Google Scholar 

  • Givnish, T. J., Sytsma, K. J., Smith, J. F., and Hahn, W. J., 1995, Molecular evolution, adaptive radiation, and geographic speciation in Cyanea (Campanulaceae), the largest plant genus endemic to Hawaii, in: Hawaiian Biogeography: Evolution on a Hot Spot (W. L. Wagner and V. A. Funk, eds.), Smithsonian Institution Press, Archipelago, Washington, D.C.

    Google Scholar 

  • Gladkova, V. N., 1972, On the origin of the subfamily Maloideae, Bot. Z. SSSR 57:42–49.

    Google Scholar 

  • Gornall, R., and Bohm, B. A., 1978, Angiosperm flavonoid evolution: A reappraisal, Syst. Bot. 3:353–368.

    Article  Google Scholar 

  • Gottlieb, L. D., 1974, Genetic confirmation of the origin of Clarkia lingulata, Evolution 28:244–250.

    Article  Google Scholar 

  • Gottlieb, L. D., 1981, Electrophoretic evidence and plant populations, Prog. Phytochem. 7:1–46.

    CAS  Google Scholar 

  • Gottlieb, L. D., 1982, Conservation and duplication of isozymes in plants, Science 216:373–380.

    Article  PubMed  CAS  Google Scholar 

  • Grant, V., 1981, Plant Speciation, Columbia University Press, New York.

    Google Scholar 

  • Hamby, R. K., and Zimmer, E. A., 1992, Ribosomal RNA as a phylogenetic tool in plant systematics, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 50–91, Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Heiser, C. B., 1949, Study in the evolution of the sunflower species Helianthus annuus and H. bolanderi. Univ. Calif. Publ. Bot. 23:157–196.

    Google Scholar 

  • Heiser, C. B., 1965, Sunflowers, weeds and cultivated plants, in: The Genetics of Colonizing Species (H. G. Baker and G. L. Stebbins, eds.), pp. 391–401, Academic Press, New York.

    Google Scholar 

  • Heiser, C. B., 1973, Introgression re-examined, Bot. Rev. 39:347–366.

    Article  Google Scholar 

  • Hey, J. M., 1992, Using phylogenetic trees to study speciation and extinction, Evolution 46:627–640.

    Article  Google Scholar 

  • Heywood, V. H. (ed.), 1978, Flowering Plants of the World, Mayflower Books, New York.

    Google Scholar 

  • Hillis, D. M., 1987, Molecular versus morphological approaches to systematics, Annu. Rev. Ecol. Syst. 18:23–42.

    Article  Google Scholar 

  • Hosaka, K., and Hanneman, R. E., 1988, The origin of the cultivated tetraploid potato based on chloroplast DNA, Theor. Appl. Genet. 76:172–176.

    CAS  Google Scholar 

  • Hutchinson, J., 1927, XIV—Contributions towards a phylogenetic classification of flowering plants: VI—The genera of Hydrangeaceae, Kew Bull. 100-108.

    Google Scholar 

  • Hutchinson, J., 1973, The Families of Flowering Plants, Oxford University Press, New York.

    Google Scholar 

  • Jansen, R. K., and Palmer, J. D., 1988, Phylogenetic implications of chloroplast DNA restriction site variation in the Mutisieae (Asteraceae), Am. J. Bot. 75:751–764.

    Article  Google Scholar 

  • Jansen, R. K., Michaels, H. J., and Palmer, J. D., 1991, Phylogeny and character evolution in the Asteraceae based on chloroplast DNA restriction site mapping, Syst. Bot. 16:98–115.

    Article  Google Scholar 

  • Jansen, R. K., Michaels, H. J., Wallace, R. S., Kim, K.-J., Keeley, S. C., Watson, L. E., and Palmer, J. D., 1992, Chloroplast DNA variation in the Asteraceae: Phylogenetic and evolutionary implications, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 252–279, Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Jeffrey, C., 1977, Corolla forms in the Compositae—Some evolutionary and taxonomic speculations, in: The Biology and Chemistry of the Compositae (V. H. Heywood, J. B. Harborne, and B. L. Turner, eds.), pp. 111–118, Academic Press, New York.

    Google Scholar 

  • Jensen, S. R., 1992, Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae, Ann. Mo. Bot. Gard. 79:284–302.

    Article  Google Scholar 

  • Johnson, L. A., and Soltis, D. E., 1994, matK DNA sequences and phylogenetic reconstruction in Saxifragaceae sensu stricto, Syst. Bot. 19:143–156.

    Article  Google Scholar 

  • Kadereit, J. W., and Sytsma, K. J., 1992, Disassembling Papaver L.: A molecular study, Nord. J. Bot. 12:205–217.

    Article  CAS  Google Scholar 

  • Kalkman, C., 1988, The phylogeny of the Rosaceae, Bot. J. Linn. Soc. 98:37–59.

    Article  Google Scholar 

  • Kim, K.-J., Jansen, R. K., and Turner, B. L., 1992a, Evolutionary implications of intraspecific chloroplast DNA variation in dwarf dandelions (Krigia-Asteraceae), Am. J. Bot. 79:708–715.

    Article  Google Scholar 

  • Kim, K.-J., Jansen, R. K., and Turner, B. L., 1992b, Phylogenetic and evolutionary implications of interspecific chloroplast DNA variation in dwarf dandelions (Krigia-Lactuceae-Asteraceae), Syst. Bot. 17:449–469.

    Article  Google Scholar 

  • Kimura, M., 1983, The Neutral Theory of Molecular Evolution, Cambridge University Press, London.

    Book  Google Scholar 

  • Krach, J. E., 1977, Seed characters in and affinities among the Saxifraginae, Plant Syst. Evol. Suppl. 1:141–153.

    Google Scholar 

  • Kron, K. A., and Chase, M. W., 1993, Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequences, Ann. Mo. Bot. Gard. 80:735–741.

    Article  Google Scholar 

  • Kyhos, D. W., Carr, G. D., and Baldwin, B. G., 1990, Biodiversity and cytogenetics of the tarweeds (Asteraceae: Heliantheae-Madiinae), Ann. Mo. Bot. Gard. 77:84–95.

    Article  Google Scholar 

  • Larson, S. R., and Doebley, J., 1993, Restriction site variation in the chloroplast genome and nuclear ribosomal DNA of Tripsacum (Poaceae): Phylogeny and rates of sequence evolution, Syst. Bot. 19:21–34.

    Article  Google Scholar 

  • Lavin, M., Mathews, S., and Hughes, C., 1992, Chloroplast DNA variation in Gliricidia sepium (Leguminosae): Intraspecific phylogeny and tokogeny, Am. J. Bot. 78:1576–1585.

    Article  Google Scholar 

  • Liston, A., Rieseberg, L. H., and Elias, T. S., 1989, Molecular divergence and morphological stasis in the intercontinental disjunct, Datisca (Datiscaceae), Aliso 12:525–542.

    Google Scholar 

  • Liston, A., Rieseberg, L. H., and Hanson, M. A., 1992, Geographic partitioning of chloroplast DNA variation in the genus Datisca (Datiscaceae), Plant Syst. Evol. 181:121–132.

    Article  CAS  Google Scholar 

  • Mabry, T. J., 1977, The order Centrospermae, Ann. Mo. Bot. Gard. 64:210–220.

    Article  Google Scholar 

  • Mabry, T. J., Taylor, A., and Turner, B. L., 1963, The betacyanins and their distribution, Phytochemistry 2:61–64.

    Article  CAS  Google Scholar 

  • Martin, P. G., and Dowd, J. M., 1991a, Studies of angiosperm phylogeny using protein sequences, Ann. Mo. Bot. Gard. 78:296–337.

    Article  Google Scholar 

  • Martin, P. G., and Dowd, J. M., 1991b, Application of evidence from molecular biology to the biogeography of angiosperms, Aust. J. Syst. Bot. 4:111–116.

    Article  Google Scholar 

  • Mayer, M. S., 1993, Evolutionary patterns and processes in the Streptanthus glandulosus complex (Cruciferae), Ph.D. dissertation, Washington State University, Pullman.

    Google Scholar 

  • Mayer, M. S., and Soltis, P. S., 1994, The evolution of serpentine endemics: A cpDNA phylogeny of the Streptanthus glandulosus complex (Cruciferae), Syst. Bot. 19:557–574.

    Article  Google Scholar 

  • Michaels, H. J., Scott, K. M., Olmstead, R. G., Szaro, T., Jansen, R. K., and Palmer, J. D., 1993, Interfamilial relationships of the Asteraceae: Insights from rbcL sequence variation, Ann. Mo. Bot. Gard. 80:742–751.

    Article  Google Scholar 

  • Miller, J. M., and Bohm, B. A., 1980, Flavonoid variation in some North American Saxifraga species, Biochem. Syst. Ecol. 8:279–289.

    Article  CAS  Google Scholar 

  • Mishler, B. D., 1985, The morphological, developmental and phylogenetic basis of species concepts in bryophytes, Bryologist 88:207–214.

    Article  Google Scholar 

  • Morgan, D. R., and Soltis, D. E., 1993, Phylogenetic relationships among members of Saxifragaceae s.l. based on rbcL sequence data, Ann. Mo. Bot. Gard. 80:631–660.

    Article  Google Scholar 

  • Morgan, D. R., Soltis, D. E., and Robertson, K. R., 1994, Systematic and evolutionary implications of rbcL sequence variation in Rosaceae, Am. J. Bot. 81:890–903.

    Article  CAS  Google Scholar 

  • Novak, S. J., and Soltis, P. S. 1991, Intraspecific cpDNA variation in four species of Lomatium (Umbelliferae), Am. J. Bot. 78(Suppl.):206.

    Google Scholar 

  • Olmstead, R. G., and Palmer, J. D., 1992, A chloroplast DNA phylogeny of the Solanaceae: Subfamilial relationships and character evolution, Ann. Mo. Bot. Gard. 79:346–360.

    Article  Google Scholar 

  • Olmstead, R. G., Michaels, H. J., Scott, K. M., and Palmer, J. D., 1992, Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL, Ann. Mo. Bot. Gard. 79:249–265.

    Article  Google Scholar 

  • Olmstead, R. G., Bremer, B., Scott, K. M., and Palmer, J. D., 1993, A parsimony analysis of the Asteridae sensu lato based on rbcL sequences, Ann. Mo. Bot. Gard. 80:700–722.

    Article  Google Scholar 

  • Palmer, J. D., and Zamir, D., 1982, Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon, Proc. Natl. Acad. Sci. USA 79:5006–5010.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., Shields, C. R., Cohen, D. B., and Orton, T. J., 1983, Chloroplast DNA evolution and the origin of amphidiploid Brassica species, Theor. Appl. Genet. 65:181–189.

    Article  CAS  Google Scholar 

  • Palmer, J. D., Jorgensen, R. A., and Thompson, W. F., 1985, Chloroplast DNA variation and evolution in Pisum: Patterns of change and phylogenetic analysis, Genetics 109:195–213.

    PubMed  CAS  Google Scholar 

  • Palmer, J. D., Nugent, J. M., and Herbon, L. A., 1987, Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, and two repeat families, Proc. Natl. Acad. Sci. USA 84:769–773.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, C., 1987, Introduction, in: Molecules and Morphology in Evolution: Conflict or Compromise? (C. Patterson, ed.), pp. 1–22, Cambridge University Press, London.

    Google Scholar 

  • Phipps, J. B., Robertson, K. R., Rohrer, J. R., and Smith, P. G., 1991, Origins and evolution of subfam. Maloideae (Rosaceae), Syst. Bot. 16:303–332.

    Article  Google Scholar 

  • Plunkett, G. M., Soltis, D. E., and Soltis, P. S., 1992, Molecular phylogenetic study of Apiales (Apiaceae, Araliaceae, and Pittosporaceae), Am. J. Bot. 79(Suppl.):158.

    Google Scholar 

  • Price, R. A., and Lowenstein, J. M., 1989, An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae, Syst. Bot. 14:141–149.

    Article  Google Scholar 

  • Price, R. A., and Palmer, J. D., 1993, Phylogenetic relationships of the Geraniaceae and Geraniales from rbcL sequence comparisons, Ann. Mo. Bot. Gard. 80:661–671.

    Article  Google Scholar 

  • Price, R. A., Calie, P. J., Downie, S. R., Logsdon, J. M., Jr., and Palmer, J. D., 1990, Chloroplast DNA variation in the Geraniaceae—A preliminary report, in: Proceedings of the International Geraniaceae Symposium (P. Vorster, ed.), pp. 237–244, University of Stellenbosch, South Africa.

    Google Scholar 

  • Qiu, Y.-L., Chase, M. W., Les, D. H., Hills, H. G., and Parks, C. R., 1993, Molecular phylogenetics of the Magnoliidae: A cladistic analysis of nucleotide sequences of the plastid gene rbcL, Ann. Mo. Bot. Gard. 80:587–606.

    Article  Google Scholar 

  • Raven, P. H., 1975, The bases of angiosperm phylogeny: Cytology, Ann. Mo. Bot. Gard. 62:724–764.

    Article  Google Scholar 

  • Reeb, C. A., and Avise, J. C., 1990, A genetic discontinuity in a continuously distributed species: Mitochondrial DNA in the American oyster, Crassostrea vaginica, Genetics 124:397–406.

    CAS  Google Scholar 

  • Rettig, J. H., Wilson, H. D., and Manhart, J. M., 1992, Phylogeny of the Caryophyllales—Gene sequence data, Taxon 41:201–209.

    Article  Google Scholar 

  • Rieseberg, L. H., 1991, Homoploid reticulate evolution in Helianthus: Evidence from ribosomal genes, Am. J. Bot. 78:1218–1237.

    Article  Google Scholar 

  • Rieseberg, L. H., and Brunsfeld, S. J., 1992, Molecular evidence and plant introgression, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 151–176, Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Rieseberg, L. H., and Soltis, D. E., 1991, Phylogenetic consequences of cytoplasmic gene flow in plants, Evol. Trends Plants 5:65–84.

    Google Scholar 

  • Rieseberg, L. H., Beckstrom-Sternberg, S. M., and Doan, K., 1990a, Helianthus annuus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes of Helianthus debilis ssp. cucumerifolius, Proc. Nat. Acad. Sci. USA 87:593–597.

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg, L. H., Carter, R., and Zona, S., 1990b, Molecular tests of the hypothesized hybrid origin of two diploid Helianthus species (Asteraceae), Evolution 44:1498–1511.

    Article  CAS  Google Scholar 

  • Rieseberg, L. H., Beckstrom-Sternberg, S. M., Liston, A., and Arias, D. M., 1991, Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae), Syst. Bot. 16:50–76.

    Article  Google Scholar 

  • Rieseberg, L. H., Hanson, M. A., and Philbrick, C. T., 1992, Androdioecy is derived from dioecy in Datiscaceae: Evidence from restriction site mapping of PCR-amplified chloroplast DNA fragments, Syst. Bot. 17:324–336.

    Article  Google Scholar 

  • Rodman, J., 1991a, A taxonomic analysis of glucosinolate-producing plants, Part 1: Phenetics, Syst. Bot. 16:598–618.

    Article  Google Scholar 

  • Rodman, J., 1991b, A taxonomic analysis of glucosinolate-producing plants. Part 2: Cladistics, Syst. Bot. 16:619–629.

    Article  Google Scholar 

  • Rodman, J., Oliver, M. K., Nakamura, P. R., McClammer, J. U., and Bledsoe, A. H., 1984, A taxonomic analysis and revised classification of Centrospermae, Syst. Bot. 9:297–323.

    Article  Google Scholar 

  • Rodman, J., Price, R., Karol, K., Conti, E., Sytsma, K., and Palmer, J. D., 1993, Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants, Ann. Mo. Bot. Gard. 80:686–699.

    Article  Google Scholar 

  • Rohrer, J. R., Robertson, K. R., and Phipps, J. B., 1991, Variation in structure among fruits of Maloideae (Rosaceae), Am. J. Bot. 78:1617–1635.

    Article  Google Scholar 

  • Savile, D. B. O., 1975, Evolution and biogeography of Saxifragaceae with guidance from their rust parasites, Ann. Mo. Bot. Gard. 62:354–361.

    Article  Google Scholar 

  • Sax, K., 1933, The origin of the Pomoideae, Proc. Am. Soc. Hortic. Sci. 30:147–150.

    Google Scholar 

  • Schilling, E. E., and Jansen, R. K., 1989, Restriction fragment analysis of chloroplast DNA and the systematics of Viguiera and related genera (Asteraceae: Heliantheae), Am. J. Bot. 76:1769–1776.

    Article  CAS  Google Scholar 

  • Schulze-Menz, G. K., 1964a, Saxifragaceae, in: A. Engler’s Syllabus der Pflanzenfamilien (H. Melchior, ed.), pp. 201–206, Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Schulze-Menz, G. K., 1964b, Rosaceae, in: A. Engler’s Syllabus der Pflanzenfamilien (H. Melchior, ed.), pp. 209–218, Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Schuster, R. M., 1972, Continental movements, Wallace’s line and Indomalayan-Australasian dispersal of land plants: Some eclectic concepts, Bot. Rev. 38:3–86.

    Article  Google Scholar 

  • Schwarzwalder, R., and Dilcher, D. L., 1991, Systematic placement of the Platanaceae in the Hamamelidae, Ann. Mo. Bot. Gard. 78:962–969.

    Article  Google Scholar 

  • Slatkin, M., and Maddison, W. P., 1989, A cladistic measure of gene flow inferred from the phylogenies of alleles, Genetics 123:603–613.

    PubMed  CAS  Google Scholar 

  • Slatkin, M., and Maddison, W. P., 1990, Detecting isolation by distance using phylogenies of genes, Genetics 126:249–260.

    PubMed  CAS  Google Scholar 

  • Smith, R. L., and Sytsma, K. J., 1990, Evolution of Populus nigra L. (sect. Aigeiros): Introgressive hybridization and the chloroplast contribution of Populus alba L. (sect. Populus), Am. J. Bot. 77:1176–1187.

    Article  Google Scholar 

  • Soltis, D. E., and Kuzoff, R. K., 1995, Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae), Evolution, in press.

    Google Scholar 

  • Soltis, D. E., and Soltis, P. S., 1993, Molecular data and the dynamic nature of polyploidy, Crit. Rev. Plant Sci. 12:243–273.

    CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., and Ness, B. D., 1989a, Chloroplast DNA variation and multiple origins of autopolyploids in Heuchera micrantha (Saxifragaceae), Evolution 43:650–656.

    Article  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Ranker, T. A., and Ness, B. D., 1989b, Chloroplast DNA variation in a wild plant, Tolmiea menziesii, Genetics 121:819–826.

    PubMed  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Clegg, M. T., and Durbin, M., 1990a, rbcL sequence divergence and phylogenetic relationships in Saxifragaceae sensu lato, Proc. Natl. Acad. Sci. USA 87:4640–4644.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., and Bothel, K., 1990b, Chloroplast DNA evidence for the origins of the monotypic Conimitella and Bensoniella (Saxifragaceae), Syst. Bot. 15:349–362.

    Article  Google Scholar 

  • Soltis, D. E., Mayer, M. S., Soltis, P. S., and Edgerton, M., 1991a, Chloroplast DNA variation in Tellima grandiflora (Saxifragaceae), Am. J. Bot. 78:1379–1390.

    Article  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Collier, T. G., and Edgerton, M. L. 1991b, Chloroplast DNA variation within and among genera of the Heuchera group (Saxifragaceae): Evidence for chloroplast transfer and paraphyly, Am. J. Bot. 78:1091–1112.

    Article  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Thompson, J. N., and Pellmyr, O., 1992a, Chloroplast DNA variation in Lithophragma (Saxifragaceae), Syst. Bot. 17:607–619.

    Article  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Kuzoff, R. K., and Tucker, T. L., 1992b, Geographic structuring of chloroplast DNA genotypes in Tiarella trifoliata (Saxifragaceae), Plant Syst. Evol. 181:203–216.

    Article  CAS  Google Scholar 

  • Soltis, D. E., Morgan, D., Grable, A., Soltis, P. S., and Kuzoff, R., 1993, Molecular systematics of Saxifragaceae sensu stricto, Am. J. Bot. 80:1056–1081.

    Article  CAS  Google Scholar 

  • Soltis, P. S., Soltis, D. E., and Gottlieb, L. D., 1987, Phosphoglucomutase gene duplications in Clarkia (Onagraceae) and their phylogenetic implications, Evolution 41:667–671.

    Article  Google Scholar 

  • Stebbins, G. L., 1942, The genetic approach to problems of rare and endemic species, Madroño 6:241–272.

    Google Scholar 

  • Stebbins, G. L., 1950, Variation and Evolution in Plants, Columbia University Press, New York.

    Google Scholar 

  • Stebbins, G. L., 1958, On the hybrid origin of angiosperms, Evolution 12:267–270.

    Article  Google Scholar 

  • Stebbins, G. L., 1959, The role of hybridization in evolution, Proc. Am. Philos. Soc. 103:231–251.

    Google Scholar 

  • Stebbins, G. L., 1972, Ecological distribution of centers of major adaptive radiation in angiosperms, in: Taxonomy, Phytogeography and Evolution (D. Valentin, ed.), pp. 7–34, Academic Press, New York.

    Google Scholar 

  • Stebbins, G. L., 1974, Flowering Plants: Evolution above the Species Level, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Suh, Y., Thien, L. B., and Zimmer, E. A., 1992, Phylogeny of the basal flowering plants: Evidence from the sequences of 26S ribosomal DNA, 5th Int. Symp. Abstr. International Association of Plant Biosystematists, p. 37.

    Google Scholar 

  • Swensen, S. M., Mullin, B. C., and Chase, M. W., 1994, Phylogenetic affinities of Datiscaceae based on an analysis of nucleotide sequences from the plastid rbcL gene, Syst. Bot. 19:157–168.

    Article  Google Scholar 

  • Sytsma, K. J., 1990, DNA and morphology: Inference of plant phylogeny, Trends Ecol. Evol. 5:104–110.

    Article  Google Scholar 

  • Sytsma, K. J., and Gottlieb, L. D., 1986a, Chloroplast DNA evolution and phylogenetic relationships in Clarkia sect. Peripetasma (Onagraceae), Evolution 40:1248–1261.

    Article  CAS  Google Scholar 

  • Sytsma, K. J., and Gottlieb, L. D., 1986b, Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia (Onagraceae), Proc. Natl. Acad. Sci. USA 83:5554–5557.

    Article  PubMed  CAS  Google Scholar 

  • Sytsma, K. J., and Smith, J. F., 1992, Molecular systematics of Onagraceae: Examples from Clarkia and Fuchsia, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 295–323, Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Sytsma, K. J., Smith, J. F., and Gottlieb, L. D., 1990, Phylogenetics in Clarkia (Onagraceae): Restriction site mapping of chloroplast DNA, Syst. Bot. 15:280–295.

    Article  Google Scholar 

  • Sytsma, K. J., Smith, J. F., and Berry, P. E., 1991, The use of chloroplast DNA to assess biogeography and evolution of morphology, breeding systems, and flavonoids in Fuchsia sect. Skinnera (Onagraceae), Syst. Bot. 16:257–269.

    Article  Google Scholar 

  • Takhtajan, A., 1969, Flowering Plants — Origin and Dispersal, Smithsonian, Washington, D.C.

    Google Scholar 

  • Takhtajan, A., 1980, Outline of the classification of flowering plants (Magnoliophyta), Bot. Rev. 46:225–359.

    Article  Google Scholar 

  • Takhtajan, A., 1987, System of Magnoliophyta, Academy of Sciences USSR, Leningrad.

    Google Scholar 

  • Thome, R. F., 1968, Synopsis of a putatively phylogenetic classification of the flowering plants, Aliso 6:57–66.

    Google Scholar 

  • Thorne, R. F., 1976, A phylogenetic classification of the Angiospermae, Evol. Biol. 9:35–106.

    Article  Google Scholar 

  • Thorne, R. F., 1983, Proposed new realignments in the angiosperms, Nord. J. Bot. 3:85–117.

    Article  Google Scholar 

  • Thorne, R. F., 1992, An updated phylogenetic classification of the flowering plants, Aliso 13:365–389.

    Google Scholar 

  • Vedel, F., Quetier, F., and Bayen, M., 1976, Specific cleavage of chloroplast DNA from higher plants by EcoRI restriction nuclease, Nature 263:440–442.

    Article  CAS  Google Scholar 

  • Warwick, S. I., and Black, L. D., 1991, Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—Chloroplast genome and cytodeme congruences, Theor. Appl. Genet. 82:81–92.

    Article  CAS  Google Scholar 

  • Warwick, S. I., Black, L. D., and Aguinagalde, I., 1992, Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—Chloroplast DNA variation in the genus Diplotaxis, Theor. Appl. Genet. 83:839–850.

    Article  Google Scholar 

  • Wendel, J. F., Stewart, J. M., and Rettig, J. H., 1991, Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium, Evolution 45:694–711.

    Article  Google Scholar 

  • Whittemore, A. T., and Schaal, B. A., 1991, Interspecific gene flow in oaks, Proc. Natl. Acad. Sci. USA 88:2540–2544.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, M. A., Gaut, B., and Clegg, M. T., 1990, Chloroplast DNA evolves slowly in the palm family, Mol. Biol. Evol. 7:303–314.

    PubMed  CAS  Google Scholar 

  • Wolf, P. G., Soltis, P. S., and Soltis, D. E., 1993, Chloroplast DNA phylogeny of the Ipomopsis aggregata complex (Polemoniaceae), Syst. Bot. 18:652–662.

    Article  Google Scholar 

  • Wu, C.-I., and Li, W.-H., 1985, Evidence for higher rates of nucleotide substitution in rodents than in mice, Proc. Natl. Acad. Sci. USA 82:1741–1745.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, Q.-Y., Soltis, D. E., Morgan, D. R., and Soltis, P. S., 1993, Phylogenetic relationships of Cornus L. sensu lato and putative relatives inferred from rbcL sequence data, Ann. Mo. Bot. Gard. 80:723–734.

    Article  Google Scholar 

  • Young, D. J., and Watson, L., 1970, The classification of dicotyledons: A study of the upper levels of hierarchy, Aust. J. Bot. 18:387–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soltis, P.S., Soltis, D.E. (1995). Plant Molecular Systematics. In: Hecht, M.K., Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1847-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1847-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5749-0

  • Online ISBN: 978-1-4615-1847-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics