Skip to main content

Drosophila Molecular Phylogenies and Their Uses

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 28))

Abstract

Relatively few organisms serve as experimental material for biologists and one could argue that of the several millions of species of plants and animals extant today, no single organism has received more attention as an experimental organism than has Drosophila. In the first part of this century, genetics was the most exciting and new area of biology and, stemming from its use by Morgan and colleagues, Drosophila played a central role in the elucidation of genetic principles. In the middle part of the century, evolutionary genetics and the synthesis of Darwinism with Mendelism represented a major advance in biological thinking; much of the empirical work used to support this synthesis centered around Drosophila as the research organism as exemplified by Dobzhansky’s work. In the latter part of the century, molecular biology and development have become premier research fields and once again Drosophila is playing a major role. The Drosophila embryo is serving as a paradigm for developmental studies (Akam, 1987; Nusslein-Volhard, 1991) as well as a paradigm for genome mapping (Ashburner et al., 1991; Hartl et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akam, M., 1987, The molecular basis for metameric pattern in the Drosophila embryo, Development 101:1–22.

    PubMed  CAS  Google Scholar 

  • Akam, M., Dawson, I., and Tear, G., 1988, Homeotic genes and the control of segment diversity, Development 104S:123–135.

    Google Scholar 

  • Anderson, C., Carew, E., and Powell, J. R., 1993, Evolution of the Adh locus in the Drosophila willistoni group: Loss of an intron and shift in codon usage, Mol Biol. Evol. 10:605–618.

    PubMed  CAS  Google Scholar 

  • Anderson, W. W., Ayala, F. J., and Michod, R. E., 1977, Chromosomal and allozymic diagnosis of three species of Drosophila, J. Hered. 68:71–74.

    PubMed  CAS  Google Scholar 

  • Anxolabehere, D., and Periquet, G., 1987, P-homologous sequences in Diptera are not restricted to the Drosophilidae family, Genet. Iber. 39:211–222.

    Google Scholar 

  • Anxolobehere, D., Kidwell, M. G., and Periquet, G., 1988, Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements, Mol. Biol. Evol. 5:353–369.

    Google Scholar 

  • Aquadro, C., Weaver, S. W., Schaeffer, S. W., and Anderson, W. W., 1991, Molecular evolution of inversions of Drosophila pseudoobscura: The amylase region, Proc. Natl. Acad. Sci. USA 88:305–309.

    PubMed  CAS  Google Scholar 

  • Ashburner, M., 1989, Drosophila: A Laboratory Handbook, Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Ashburner, M., Glover, D. M., Saunders, R. D. C., Duyncan, I., Hartl, D., Merriam, J., Lee, G., Hohnsen, J., Kafatos, F., Siden-Kiamos, I., Louis, C., and Savakis, C., 1991, Genome maps 1991: Drosophila component, Science 254:247–262.

    PubMed  Google Scholar 

  • Beckenbach, A. T., Wei, Y. W., and Liu, H., 1992, Evolution of the mitochondrial cytochrome oxidase gene in the Drosophila obscura species group, Mol. Biol. Evol. 10:619–634.

    Google Scholar 

  • Beverley, S. M., and Wilson, A. C., 1982, Molecular evolution in the Drosophila and higher Diptera. I. Micro-complement fixation studies of larval hemolymph protein, J. Mol. Evol. 18:251–264.

    PubMed  CAS  Google Scholar 

  • Beverley, S. M., and Wilson, A. C., 1984, Molecular evolution in Drosophila and the higher Diptera. II. A time scale for fly evolution, J. Mol. Evol. 21:1–13.

    PubMed  CAS  Google Scholar 

  • Beverley, S. M., and Wilson, A. C., 1985, Ancient origin for Hawaiian Drosophilinae inferred from protein comparisons, Proc. Natl. Acad. Sci. USA 82:4753–4757.

    PubMed  CAS  Google Scholar 

  • Bingham, P. M., Kidwell, M. G., and Rubin, G. M., 1982, The molecular basis of P-M hybrid dysgenesis. The role of the P element, a P-strain-specific transposon family, Cell 29:995–1004.

    PubMed  CAS  Google Scholar 

  • Bock, I., 1984, Interspecific hybridization in the genus Drosophila, Evol. Biol. 18:41–70.

    Google Scholar 

  • Bodmer, M., and Ashburner, M., 1984, Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila, Nature 309:425–430.

    PubMed  CAS  Google Scholar 

  • Brookfield, J. F. Y., Montgomery, E., and Langley, C. H., 1984, Apparent absence of transposable elements related to the P elements in D. melanogaster in other species of Drosophila, Nature 310:330–332.

    PubMed  CAS  Google Scholar 

  • Buzzati-Traverso, A., and Scossiroli, R., 1955, The “obscura group” of the genus Drosophila, Adv. Genet. 7:47–92.

    PubMed  CAS  Google Scholar 

  • Caccone, A., DeSalle, R., and Powell, J. R., 1988a, Calibration of the change in thermal stability of DNA duplexes and degree of base-pair mismatch, J. Mol. Evol. 27:212–216.

    PubMed  CAS  Google Scholar 

  • Caccone, A., Amato, G. D., and Powell, J. R., 1988b, Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup, Genetics 118:671–683.

    PubMed  CAS  Google Scholar 

  • Caccone, A., Gleason, J. M., and Powell, J. R., 1992, Complementary DNA-DNA hybridization in Drosophila, J. Mol. Evol. 34:130–140.

    PubMed  CAS  Google Scholar 

  • Carson, H. L., 1992, Inversions in Hawaiian Drosophila, in: Drosophila Inversion Polymorphism (C. B. Krimbas and J. R. Powell, eds.), pp. 408–439, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Carson, H. L., and Clague, D. A., 1994, Geology and biogeography of Hawaii, in: Hawaiian Biogeography: Evolution on a Hot Spot Archipelago (W. L. Wagner and V. A. Funk, eds.), Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Carson, H. L., and Kaneshiro, K. Y., 1976, Drosophila of Hawaii: Systematic and ecological genetics, Annu. Rev. Ecol. Evol. 7:311–345.

    Google Scholar 

  • Carson, H. L., and Yoon, J. S., 1982, Genetics and evolution of Hawaiian Drosophila, in: Genetics and Biology of Drosophila, Vol. 3b (M. Ashburner, H. L. Carson, and J. N. Thompson, eds.), pp. 298–344, Academic Press, New York.

    Google Scholar 

  • Chandler, P. J., 1987, The families Diastatidae and Campichoetidae (Diptera:Drosophilidae) with revision of Palaeartic and Nepalese species of Diastata, Meigen, Entomol. Scand. 18:1–50.

    Google Scholar 

  • Clayton, F. E., and Guest, W. C., 1986, Overview of chromosomal evolution in the family Drosophilidae, in: Genetics and Biology of Drosophila, Vol. 3e (M. Ashburner, H. L. Carson, and J. N. Thompson, eds.), pp. 1–38, Academic Press, New York.

    Google Scholar 

  • Coyne, J., and Kreitman, M., 1986, Evolutionary genetics of two sibling species, Drosophila simulans and Drosophila mauritiana, Evolution 40:673–691.

    CAS  Google Scholar 

  • Daniels, S. B., and Strausbaugh, L. D., 1986, The distribution of P-element sequences in Drosophila: The willistoni and saltans species groups, J. Mol. Evol. 23:138–148.

    PubMed  CAS  Google Scholar 

  • Daniels, S. B., Strausbaugh, L. D., Ehrman, L., and Armstrong, R., 1984, Sequences homologous to P elements occur in Drosophila paulistorum, Proc. Natl. Acad. Sci. USA 81:6794–6797.

    PubMed  CAS  Google Scholar 

  • Daniels, S. B., Peterson, K. R., Strausbaugh, L. D., Kidwell, M. G., and Chovnick, A., 1990, Evidence for horizontal transmission of the P transposable element between Drosophila species, Genetics 124:339–355.

    PubMed  CAS  Google Scholar 

  • DeSalle, R., 1992a, The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences, Mol. Phylogenet. Evol. 1:31–40.

    PubMed  CAS  Google Scholar 

  • DeSalle, R., 1992b, Origin and possible time of divergence of the Hawaiian Drosophilidae, Mol. Biol. Evol. 9:905–916.

    PubMed  CAS  Google Scholar 

  • DeSalle, R., 1993, Flies and congruence, Am. J. Phys. Anthropology 94:125–141.

    Google Scholar 

  • DeSalle, R., 1994, Molecular approaches to biogeographical analysis of Hawaiian Drosophila, in: Hawaiian Biogeography: Evolution on a Hot Spot Archipelago (W. L. Wagner and V. A. Funk, eds.), Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • DeSalle, R., and Carew, E., 1992, Phyletic phenocopy and the role of developmental genes in morphological evolution in the Drosophilidae, J. Evol. Biol. 5:364–374.

    Google Scholar 

  • DeSalle, R., and Giddings, L. V., 1986, Discordance of nuclear and mitochondrial DNA phylogenies in Hawaiian Drosophila, Proc. Natl. Acad. Sci. USA 83:6902–6906.

    PubMed  CAS  Google Scholar 

  • DeSalle, R., and Grimaldi, D., 1991, Morphological and molecular systematics of the Drosophilidae, Annu. Rev. Ecol. Syst. 22:447–475.

    Google Scholar 

  • DeSalle, R., and Grimaldi, D., 1992, Characters and systematics of the drosophilidae, J. Hered. 83:182–188.

    PubMed  CAS  Google Scholar 

  • DeSalle, R., and Grimaldi, D., 1993, Phylogenetic pattern and developmental process in Drosophila, Syst. Biol. 42:458–475.

    Google Scholar 

  • DeSalle, R., Friedman, T., Prager, E., and Wilson, A. C., 1987, Tempo and mode of sequence evolution in mtDNA of Hawaiian Drosophila, J. Mol. Evol 26:157–164.

    PubMed  CAS  Google Scholar 

  • Garcia-Bellido, A., 1983, Comparative anatomy of cuticular patterns in the genus Drosophila, in: Development and Evolution (B. C. Goodwin, N. Holder, and C. G. Wylie, eds.), pp. 227–255, Cambridge University Press, London.

    Google Scholar 

  • Garcia-Bellido, A., and deCellis, J. F., 1992, Developmental genetics of the veination pattern of Drosophila, Annu. Rev. Genet. 26:277–304.

    PubMed  CAS  Google Scholar 

  • Goddard, K., Caccone, A., Powell, J. R., 1990, Evolutionary implications of DNA divergence in the Drosophila obscura group, Evolution 44:1656–1670.

    Google Scholar 

  • Green, M. M., 1980, Transposable elements in Drosophila and other Diptera, Annu. Rev. Genet. 14:109–120.

    PubMed  Google Scholar 

  • Griffiths, C. D., 1972, The phylogenetic classification of Diptera Cyclorrapha, with special reference to the structure of the male postabdomen, Ser. Entomol. 8:1–340.

    Google Scholar 

  • Grimaldi, D. A., 1987, Amber fossil Drosophilidae (Diptera), with particular reference to the Hispanolan taxa, Am. Mus. Novit. 2880:1–23.

    Google Scholar 

  • Grimaldi, D. A., 1988, Relicts in the Drosophilidae (Diptera), Liebherr 1988:183–213.

    Google Scholar 

  • Grimaldi, D. A., 1990, A phylogenetic, revised classification of genera in the Drosophilidae, Bull. Am. Mus. Nat. Hist. 197:1–139.

    Google Scholar 

  • Grimaldi, D. A., and Fenster, G., 1989, Evolution of extreme sexual dimorphisms: Structural and behavioral convergence among broad-headed male Drosophilidae (Diptera), Am. Mus Novit. 2939:1–25.

    Google Scholar 

  • Hagemann, S., Miller, W. J., and Pinsker, W., 1990, P-related sequences in Drosophila bifasciata: A molecular clue to the understanding of P-element evolution in the genus Drosophila, J. Mol. Evol. 31:478–484.

    PubMed  CAS  Google Scholar 

  • Haiti, D. L., Ajioka, J. W., Cai, H., Lohe, A. R., Lozovskaya, E. R., Smoller, D. A., and Duncan, I. W., 1992, Towards a Drosophila genome map, Trends Genet. 8:70–75.

    Google Scholar 

  • Harvey, P. H., and Pagel, M. D., 1991, The Comparative Method in Evolutionary Biology, Oxford University Press, London.

    Google Scholar 

  • Hennig, W., 1965, Die Acalypteratrae Baltishen Bernsteins, Stuttg. Beitr. Naturkd. 145:10213.

    Google Scholar 

  • Hennig, W., 1973, Part 31. Diptera (Zweiflugler), in: Kukenthal’s Handbuch derZoologie 4(2): Berlin: Walter de Gruyter, pp. 1–200.

    Google Scholar 

  • Houck, M. A., Clark, J. B., Peterson, K. R., and Kidwell, M. G., 1991, Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis, Science 253:1125–1129.

    PubMed  CAS  Google Scholar 

  • Hunt, J. A., and Carson, H. L., 1983, Evolutionary relationship of four species of Hawaiian Drosophila as measured by DNA reassociation, Genetics 104:353–364.

    PubMed  CAS  Google Scholar 

  • Hunt, J. A., Hall, T. J., and Britten, R. J., 1981, Evolutionary distance in Hawaiian Drosophila measured by DNA reassociation, J. Mol. Evol. 17:361–367.

    PubMed  CAS  Google Scholar 

  • Kaneshiro, K. Y., 1983, Sexual selection and the direction of evolution in the biosystematics of Hawaiian Drosophila, Annu. Rev. Entomol. 28:161–178.

    Google Scholar 

  • Kidwell, M. G., 1983, Evolution of hybrid dysgenesis determinants in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 80:1655–1659.

    PubMed  CAS  Google Scholar 

  • Kidwell, M. G., Kidwell, J. F., and Sved, J. A., 1977, Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits including mutation and male recombination, Genetics 86:813–833.

    PubMed  CAS  Google Scholar 

  • Kidwell, M. G., Novy, J. B., and Feeley, S. M., 1981, Rapid unidirectional change of hybrid dysgenesis potential in Drosophila, J. Hered. 72:32–38.

    PubMed  CAS  Google Scholar 

  • Kliman, R. M., and Hey, J., 1993, DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex, Genetics 133:375–387.

    PubMed  CAS  Google Scholar 

  • Kluge, A. G., 1985, Ontogeny and phylogenetic systematics, Cladistics 1:13–27.

    Google Scholar 

  • Kluge, A. G., 1989, A concern for evidence and a phylgenetic hypothesis of relationships among Epicrates (Boidae, Serpentes), Syst. Zool. 38:7–25.

    Google Scholar 

  • Koske, T., 1953, Artkreuzungsversuche in der obscura-Gruppe der Gattung Drosophila, Z. indukt. Abstamm. Vererbungsl. 85:373–381.

    PubMed  CAS  Google Scholar 

  • Krimbas, C. D., and Powell, J. R., 1992, Drosophila Inversion Polymorphism, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lachaise, D., Cariou, M.-L., David, J. R., Lemeunier, F., and Ashburner, M., 1988, Historical biogeography of the D. melanogaster species subgroup, Evol. Biol. 22:159–226.

    Google Scholar 

  • Lakovaara, S., and Saura, A., 1982, Evolution and speciation in the Drosophila obscura group, in: The Genetics and Biology of Drosophila, Vol. 3b (M. Ashburner, H. L. Carson, and J. N. Thompson, eds.), pp. 2–59, Academic Press, New York.

    Google Scholar 

  • Latorre, A., Barrio, E., Moya, A., and Ayala, F. J., 1988, Mitochondrial DNA evolution in the Drosophila obscura group, Mol. Biol. Evol. 5:717–728.

    PubMed  CAS  Google Scholar 

  • MacAlpine, J. F., 1989, Phylogeny and classification of Muscomorpha, in: Manual of Nearctic Diptera (J. F. MacAlpine, ed.), Vol. 3, pp. 1397–1518, Minister Supply and Services, Ottawa, Canada.

    Google Scholar 

  • MacAlpine, J. F., and Martin, J. E. H., 1966, Systematics of Sciodoceridae and relatives with a description of two new genera and species from Canadian amber: An erection of the family Ironomyiidae (Diptera:Phoroidae), Canad. Entomol. 98:527–544.

    Google Scholar 

  • MacIntyre, R. J., and Collier, G. E., 1986, Protein evolution in the genus Drosophila, in: The Genetics and Biology of Drosophila, Vol. 3e (M. Ashburner, H. L. Carson, and J. N. Thompson, eds.), pp. 39–146, Academic Press, New York.

    Google Scholar 

  • Maddison, D. R., 1994, Phylogenetic methods for inferring the evolutionary history and processes of change in discretely valued characters, Annu. Rev. Entomol. 39:267–292.

    Google Scholar 

  • Maddison, W. P., and Maddison, D. R., 1992, MacClade: Analysis of Phylogeny and Character Evolution. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Marshall, C., 1990, The fossil record and estimating divergence times between lineages: Maximum divergence times and the importance of reliable phylogenies, J. Mol. Evol. 30:400–408.

    PubMed  CAS  Google Scholar 

  • Moriyama, E., 1987, Higher rates of nucleotide substitution in Drosophila than in mammals, Jpn. J. Genet. 62:139–147.

    Google Scholar 

  • Muller, G. B., and Wagner, G., 1991, Novelty in evolution: Restructuring the concept, Annu. Rev. Ecol. Syst. 22:229–256.

    Google Scholar 

  • Muller, H. J., 1940, Bearings of the Drosophila work on systematics, in: The New Systematics (J. Huxley, ed.), Oxford University Press, London.

    Google Scholar 

  • Nixon, K. C., 1992, CLADOS, version 1.2., distributed by author, Ithaca, New York.

    Google Scholar 

  • Nusslein-Volhard, C., 1991, Determination of the embryonic axes of Drosophila, Development Suppl. 1:1010.

    Google Scholar 

  • Okada, T., 1989, A proposal for establishing tribes for the family Drosophilidae with keys to tribes and genera (Diptera), Zool. Sci. 6:391–399.

    Google Scholar 

  • Pamilo, P., and Nei, M., 1988, Relationships between gene trees and species trees, Mol. Biol. Evol. 5:568–583.

    PubMed  CAS  Google Scholar 

  • Patterson, J. T., and Stone, W. S., 1952, Evolution in the Genus Drosophila, Macmillan Co., New York.

    Google Scholar 

  • Pelandakis, M., and Solignac, M., 1993, Molecular phylogeny of Drosophila based on ribosomal RNA sequences, J. Mol. Evol. 37:525–543.

    PubMed  CAS  Google Scholar 

  • Pelandakis, M., Higgins, D. G., and Solignac, M., 1991, Molecular phylogeny of the subgenus Sophophora of Drosophila derived from the large subunit of ribosomal RNA sequences, Genetica 84:87–94.

    PubMed  CAS  Google Scholar 

  • Powell, J. R., Caccone, A., Gleason, J. M., and Nigro, L., 1993, Rates of evolution in Drosophila depend on function and developmental stage of expression, Genetics 133:291–298.

    PubMed  CAS  Google Scholar 

  • Remane, A., 1952, Die Grundlagen des Naturlichen Systems der Vergleichenden Anatomie und der Phylogenetik, Geest & Portig K.G., Leipzig.

    Google Scholar 

  • Rousset, F., Pelandakis, M., and Solignac, M., 1991, Evolution of compensatory substitutions through GU intermediate state in Drosophila rRNA, Proc. Natl. Acad. Sci. USA 88:10032–10036.

    PubMed  CAS  Google Scholar 

  • Rowan, R., and Hunt, J., 1991, Rates of DNA change and phylogeny from the DNA sequences of the Adh gene for five closely related species of Hawaiian Drosophila, Mol. Biol. Evol. 8:49–70.

    PubMed  CAS  Google Scholar 

  • Saitou, N., and Nei, M., 1987, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4:406–425.

    PubMed  CAS  Google Scholar 

  • Sander, K., 1988, Studies in insect segmentation: From teratology to phenogenetics, Development 104(Suppl.):112–121.

    Google Scholar 

  • Schulze, D. H., and Lee, C. S., 1986, DNA sequence comparison among closely related Drosophila species of the mulleri complex, Genetics 113:287–303.

    PubMed  CAS  Google Scholar 

  • Spicer, G., 1988, Molecular evolution among some Drosophila species groups as indicated by two-dimensional electrophoresis, J. Mol. Evol. 27:250–260.

    PubMed  CAS  Google Scholar 

  • Spieth, H. T., 1952, Mating behavior within the genus Drosophila (Diptera), Bull. Am. Mus. Nat. Hist. 99:395–474.

    Google Scholar 

  • Spieth, H. T., 1966, Courtship behavior of endemic Hawaiian Drosophila, Univ. Texas Publ. 6615:133–145.

    Google Scholar 

  • Springer, M., Davidson, E. H., and Britten, R. J., 1992, Calculation of sequence divergence from the thermal stability of DNA heteroduplexes, J. Mol. Evol. 34:379–382.

    PubMed  CAS  Google Scholar 

  • Stalker, H. D., 1972, Intergroup phylogenies in Drosophila as determined by comparison of salivary banding patterns, Genetics 82:323–344.

    Google Scholar 

  • Stebbins, G. L., and Basile, P., 1985, Phyletic phenocopies: A useful technique for probing the genetic developmental basis of evolutionary change, Evolution 40:422–425.

    Google Scholar 

  • Sturtevant, A. H., 1942, The classification of the genus Drosophila with a description of nine new species, Univ. Tex. Publ. 4213:5–51.

    Google Scholar 

  • Sturtevant, A. H., and Novitski, E., 1941, The homologies of the chromosome elements in the genus Drosophila, Genetics 26:515–541.

    Google Scholar 

  • Sullivan, D. T., Atkinson, R. W., and Starmer, W. T., 1990, Molecular evolution of the alcohol dehydrogenase genes in the genus Drosophila, Evol. Biol. 24:107–147.

    CAS  Google Scholar 

  • Swofford, D. L., 1991, Phylogenetic Analysis Using Parsimony (PAUP), version 3.0s, Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • Swofford, D. L., and Maddison, W. P., 1992, Parsimony, character state reconstructions and evolutionary inferences, in: Systematics, Historical Ecology and North American Freshwater Fishes (R. L. Mayden, ed.), Stanford University Press, Stanford, California.

    Google Scholar 

  • Tear, G., Bate, C. M., and Martinez Arias, A., 1988, A phylogenetic interpretation of the patterns of gene expression in Drosophila embryos, Development 104(Suppl.):135–146.

    Google Scholar 

  • Thomas, R., and Hunt, J., 1991, The molecular evolution of the alcohol dehydrogenase locus and the phylogeny of the Hawaiian Drosophila, Mol. Biol. Evol. 8:687–702.

    PubMed  CAS  Google Scholar 

  • Thomas, R., and Hunt, J., 1993, Phylogenetic relationships in Drosophila: A conflict between molecular and morphological data, Mol. Biol. Evol. 10:362–374.

    PubMed  CAS  Google Scholar 

  • Throckmorton, L., 1962, The problem of phylogeny in the genus Drosophila, Univ. Tex. Publ. 6205:207–343.

    Google Scholar 

  • Throckmorton, L., 1966, The relationships of the endemic Hawaiian Drosophilidae, Univ. Texas Publ. 6615:335–396.

    Google Scholar 

  • Throckmorton, L., 1975, The phylogeny, ecology and geography of Drosophila, in: Handbook of Genetics (R. C. King, ed.), Vol. 3, pp. 421–469, Plenum Press, New York.

    Google Scholar 

  • Wagner, G. P., 1989, The biological homology concept, Annu. Rev. Ecol. Syst. 20:51–69.

    Google Scholar 

  • Wallace, B., and Dobzhansky, Th., 1946, Experiments on sexual isolation in Drosophila. VIII. Influence of light on the mating behavior of Drosophila subobscura, Drosophila persimilis, and Drosophila pseudoobscura, Proc. Natl. Acad. Sci. USA 32:226–234.

    PubMed  CAS  Google Scholar 

  • Wasserman, M., 1992, Cytological evolution of the Drosophila repleta species group, in: Drosophila Inversion Polymorphism (C. B. Krimbas and J. R. Powell, eds.), pp. 455–552, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Wenzel, J. W., 1992, Behavioral homology and phylogeny, Annu. Rev. Ecol. Syst. 23:361–381.

    Google Scholar 

  • Wheeler, M., 1981, The Drosophilidae: A taxonomic overview, in: Genetics and Biology of Drosophila, Vol. 3b (M. Ashburner, H. L. Carson, and J. N. Thompson, Jr., eds.), Academic Press, New York.

    Google Scholar 

  • Wojtas, K. M., von Kalm, L., Weaver, J. R., and Sullivan, D. T., 1992, The evolution of duplicate glyceraldehyde-3-phosphate dehydrogenase genes in Drosophila, Genetics 132:789–797.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powell, J.R., DeSalle, R. (1995). Drosophila Molecular Phylogenies and Their Uses. In: Hecht, M.K., Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1847-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1847-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5749-0

  • Online ISBN: 978-1-4615-1847-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics