Free Radicals and Ocular Disease

  • Robert E. Anderson
  • Frank L. Kretzer
  • Laurence M. Rapp
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


The eye is a unique organ in that its very reason for existence, to capture photons, exposes it to the harmful effects of a number of light-induced processes. The high levels of long chain polyunsaturated fatty acids (PUFA) and prodigious utilization of oxygen by the retina make this tissue especially vulnerable to the consequences of free radical induced lipid peroxidation. This chapter will briefly review evidence for lipid peroxidation in several ocular disorders.


Spindle Cell Macular Degeneration Retinal Damage Light Damage Senile Cataract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. Quinn, V. Dobson, C.C. Barr, B.R. Davis, J.T. Flynn, E.A. Palmer, J. Robertson, and M.T. Trese, Visual acuity in infants after vitrectomy for severe retinopathy of prematurity, Ophthalmol. 98:5 (1991).Google Scholar
  2. 2.
    H.A. Mintz-Hittner, T.C. Prager, and F.L. Kretzer, Visual acuity correlates with seveity of retinopathy of prematurity in untreated infants weighing 750g or less at bith, Arch. Ophthalmol. 110:1087 (1992).CrossRefPubMedGoogle Scholar
  3. 3.
    H.A. Mintz-Hittner, and F.L. Kretzer, Postnatal retinal vascularization in former pretrm infants with retinopathy of prematurity, Ophthalmol. 101:548 (1994).Google Scholar
  4. 4.
    E.A. Palmer, J.T. Flynn, R.J. Hardy, D.L. Phelps, C.L. Phillips, D.B. Schaffer, and B. Tun, Incidence and early course of retinopathy of prematurity, Ophthalmol. 98:1628 (1991).Google Scholar
  5. 5.
    D.B. Schaffer, E.A. Palmer, D.F. Plotsky et al., Prognostic factors in the natural course of reinopathy of prematurity, Ophthalmol. 100:230 (1993).Google Scholar
  6. 6.
    D.L. Phelps, D.R. Brown, B. Tung, G. Cassady, R.E. McClead, D.M. Purohit, and E.A. Paler, 28-day survival rates of 6676 neonates with birth weights of 1250 grams or less, Pediatrics. 87:7 (1991).PubMedGoogle Scholar
  7. 7.
    Committee for the Classification of Retinopathy of Prematurity, An international classification of retinopathy of prematurity, Arch. Ophthalmol. 102:1130 (1984).Google Scholar
  8. 8.
    Cryotherapy for Retionpathy of Prematurity Cooperative Group, Multicenter trial of cryotherapy for retinopathy of prematurity — preliminary results, Arch. Ophthalmol. 106:471 (1988).Google Scholar
  9. 9.
    Cryotherapy for Retionpathy of Prematurity Cooperative Group, Multicenter trial of cryotherapy for retinopathy of prematurity: 3 1/2; year outcome — structure and function., Arch. Ophthalmol. 111:339 (1993).Google Scholar
  10. 10.
    F.L. Kretzer, R.S. Mehta, A.T. Johnson, D.G. Hunter, E.S. Brown, and H.M. Hittner, Vitamin E protects against retinopathy of prematurity through action on spindle cells, Nature. 309:793 (1984).CrossRefPubMedGoogle Scholar
  11. 11.
    F.L. Kretzer, and H.M. Hittner, H.M., Retinopathy of prematurity: clinical implications of retinal development, Arch. of Dis. Child. 63:1151 (1988).CrossRefGoogle Scholar
  12. 12.
    H.M. Hittner, L.B. Godio, A.J. Rudolph, J.M. Adams, J.A. Garcia-Prats, Z. Friedman, J. A. Kautz, and W.A. Monaco, Retrolental fibroplasia: efficacy of vitamin E in a double-blind clinical study of preterm intants, N Engl. J. Med. 305:1365 (1981).CrossRefPubMedGoogle Scholar
  13. 13.
    N.N. Finer, G. Grant, R.F. Schindler, G.B. Hill, and K.L. Peters, Effect of intramuscular vitamin E on frequency and severity of retrolental fibroplasia; a controlled trial, Lancet. 1:1087 (1982).CrossRefPubMedGoogle Scholar
  14. 14.
    L. Johnson, G.E. Quinn, S. Abbasi, C. Otis, D. Goldstein, L. Sacks, R. Porat, E. Fong, M. Delivoria-Papadopoulos, G. Peckham, D. B. Schaffer, and F. W. Bowen, Effect of sustained pharmacologic vitmin E levels on incidence and severity of retinopathy of prematurity: A controlled clinical trial, J. Pediatr. 114:827 (1989).CrossRefPubMedGoogle Scholar
  15. 15.
    J.C. Nielson, M.I. Naash, and R.E. Anderson, R.E., The regional distribution of vitamins E and C in mature and premature human retinas, Invest. Ophthalmol Vis. Sci. 29:22 (1988).Google Scholar
  16. 16.
    S.J. Fliesler and R.E. Anderson, Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22:79Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22:79 (1983).Google Scholar
  17. 17.
    W.K. Noell, V.S. Walker, B.S. Kang, and S. Berman, Retinal damage by light in rats. Invest. Ophthalmol. Vis. Sci. 5:450 (1966).Google Scholar
  18. 18.
    T. Kuwabara, and R.A. Gorn, Retinal damage by visible light: An electron microscope study, Arch. Ophthalmol. 79:69 (1968).CrossRefPubMedGoogle Scholar
  19. 19.
    A. Grignolo, N. Orzatesi, R. Castellazzo, and P. Vittone, Retinal damage by visible light in albino rats: An electron microscope study, Ophthalmologica. 157:43 (1969).CrossRefPubMedGoogle Scholar
  20. 20.
    W.K. O’steen, C.R. Shear, and K.V. Anderson, Retinal damage after prolonged exposure to visible light: A light and electron microscopic study. Am. J. A. Nat. 134:5Retinal damage after prolonged exposure to visible light: A light and electron microscopic study. Am. J. A. Nat. 134:5 (1972).Google Scholar
  21. 21.
    L.M. Rapp, and S.C. Smith, Morphological comparisons between rhodopsin-mediated and short-wavelength classes of retinal light damage, Invest. Ophthalmol. Vis. Sci. 33:3367 (1992).PubMedGoogle Scholar
  22. 22.
    W.T. Ham, Jr., J.J. Ruffolo, Jr., H.A. Mueller, A.M. Clarke, and M.E. Moon, Histologic analysis of photochemical lesions produced in rhesus retina by short-wavelength light, Invest. Ophthalmol. Vis. Sci. 17:1029 (1978).PubMedGoogle Scholar
  23. 23.
    J.D. Spikes, Photosensitization, in: “The Science of Photobiology,” K.C. Smith, ed., Plenum Publishing Corp., New York (1977).Google Scholar
  24. 24.
    V.E. Kagan, A.A. Shvedova, K.N. Novikov, and Y.P. Kozlov, Light-induced free radical oxidation of membrane lipids in photoreceptors of frog retina, Biochimica et Biophysica Acta. 330:76 (1973).CrossRefPubMedGoogle Scholar
  25. 25.
    V.E. Kagan, I.Y. Kuliev, V.B. Spirichev, A.A. Shvedova, and Y.P. Kozlov, Accumulation of lipid peroxidation products and depression of retinal electrical activity in vitamin E deficient rats exposed to high-intensity light, Bull. Exp. Biol. Med. 91:144 (1981).CrossRefGoogle Scholar
  26. 26.
    R.D. Wiegand, N.M. Guisto, L.M. Rapp, and R.E. Anderson, Evidence for rod outer segment lipid peroxidation following constant illlumination of the rat retina, Invest. Ophthalmol. Vis. Sci. 24:1433 (1983).PubMedGoogle Scholar
  27. 27.
    R.D. Wiegand, C.D. Joel, L.M. Rapp, J.C. Nielsen, M.B. Maude, and R.E. Anderson, Polyunsaturated fatty acids and vitamin E in rat rod outer segments during light damage, Invest. Ophthalmol. Vis. Sci. 27:727 (1986).PubMedGoogle Scholar
  28. 28.
    W.T.J. Ham, H.A. Mueller, J.J.J. Ruffolo, J.E. Milien, S.F. Cleary, R.K. Guerry, and D.I. Guerry, Basic mechanisms underlying the production of photochemical lesions in the mammalian retina, Curr. Eye Res. 3:165 (1984).CrossRefPubMedGoogle Scholar
  29. 29.
    R.S. Crockett, and T. Lawhill, Oxygen dependence of damage by 435 nm light in cultured retinal epithelium, Curr. Eye Res. 3:209 (1984).CrossRefPubMedGoogle Scholar
  30. 30.
    J.S. Penn, and R.E. Anderson, Effects of light history on the rat retina, in: “Progress in Retinal Research,” N. Osborne and G. Chader, ed., Pergamon Press, New York (1992).Google Scholar
  31. 31.
    R.A. Bush, C.E. Reme, and A. Malnoe, Light damage in the rat retina: the effect of dietary deprivation of n-3 fatty acids on acute structural alterations, Exp. Eye Res. 53:741 (1991).CrossRefPubMedGoogle Scholar
  32. 32.
    C.A. Koutz, R.D. Wiegand, H. Chen, and R.E. Anderson., Effect of dietary fat and environmental lighting on the susceptibility of rat photoreceptors to light damage, Invest. Ophthalmol. Vis. Sci. supp. 32:1096 (1992).Google Scholar
  33. 33.
    C.E. Reme, A. Malnoe, H.H. Jung, Q. Wei, and K. Münz, Effect of dietary fish oil on acute light-induced photoreceptor damage in the rat retina, Invest. Ophthalmol. Vis. Sci. 35:78 (1994).PubMedGoogle Scholar
  34. 34.
    H. Heath, A.C. Rutter, and T.C. Beck, Changes in the ascorbic acid and glutathione content of the retinae and adrenals from alloxandiabetic rats, Vis. Res. 2:431 (1962).CrossRefGoogle Scholar
  35. 35.
    M. Hall and D. Hall, Superoxide dismutase of bovine and frog rod outer segments. Biochem. Biophys. Res. Com. 67:1199 (1975).CrossRefPubMedGoogle Scholar
  36. 36.
    L.M. Rapp, M.I. Naash, R.D. Weigand, C.D. Joel, J.D. Nielsen, and R.E. Anderson, Morphological and biochemical comparisons between retinal regions having differing susceptibility to photoreceptor degeneration, in: “Retinal Degeneration,” M.M. LaVail, ed., Alan R. Liss, Inc., New York (1985).Google Scholar
  37. 37.
    W.L. Stone, M.L. Katz, M. Lurie, M.F. Marmor, and E. A. Dratz, Effects of dietary vitamin E and selenium on light damage to the rat retina, Photochem. Photobiol. 29:725 (1979).CrossRefPubMedGoogle Scholar
  38. 38.
    S.M. Sykes, W.G.J. Robinson, and J.G. Bieri, Retinal damage by cyclic light and the effect of vitamin E, DHHS Publication FDA 81:8156 (1981).Google Scholar
  39. 39.
    M.L. Katz, and G.E. Eldred, Failure of vitamin E to protect the retina against damage resulting from bright cyclic light exposure, Invest. Ophthalmol. Vis. Sci. 30:29 (1989).PubMedGoogle Scholar
  40. 40.
    C.D. Joel, S. Briggs, D. Gall, J. Hannan, M. Kahlow, M. Stein, A. Tarver, and A. Yip, Light causes early loss of retinal tocopherol in vivo, Invest. Ophthalmol. Vis. Sci. 20:166 (1981).Google Scholar
  41. 41.
    D.T. Organisciak, H.M. Wang, Z.Y. Li, and M.O.M. Tso, The protective efect of ascorbate in retinal light damage of rats. Invest. Ophthalmol. Vis. Sci. 26:1580 (1985).PubMedGoogle Scholar
  42. 42.
    Z.Y. Li, M.O.M. Tso, H.M. Wang, and D.T. Organisciak, Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic study, Invest. Ophthalmol. Vis. Sci. 26:1589 (1985).PubMedGoogle Scholar
  43. 43.
    D.T. Organisciak, Y.L. Jiang, H.M. Wang, and I. Bicknell, The protective effect of ascorbic acid in retinal light damage of rats exposed to intermittent light, Invest. Ophthalmol. Vis. Sci. 31:1195 (1990).PubMedGoogle Scholar
  44. 44.
    G.J. Handleman, E.A. Dratz, C.C. Reay, and F.J. G.M. Van Kuijk, Carotenoids in the human macula and whole retina. Invest. Ophthalmol. Vis. Sci. 29:850 (1988).Google Scholar
  45. 45.
    L.M. Rapp, P.L. Fisher, and D.W. Suh, Beta-carotene supplementation and light-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci. suppl. 35:1391 (1994).Google Scholar
  46. 46.
    M.O.M. Tso, Experiments on visuals cell by nature and man: In search of treatment for photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 30:2430 (1989).PubMedGoogle Scholar
  47. 47.
    R. A. Bone, J.T. Landrum, and S.L. Tarsis, Preliminary identirication of the human macular pigment, Vision Res. 25:1531 (1985).CrossRefPubMedGoogle Scholar
  48. 48.
    W. Schalch, Carotenoids in the retina — A review of their possible role to prevent or limit damage caused by light and oxygen, in: “Free Radicals and Aging,” B.I. Emerit, and B. Chance eds., Birkhäuser Verlag, Basel (1992).Google Scholar
  49. 49.
    S. Lam, M.O.M. Tso, and D.H. Gurne, Amelioration of retinal photic injury in albino rats by dimethylthiourea, Arch. Ophthalmol. 108:1751 (1990).CrossRefPubMedGoogle Scholar
  50. 50.
    D.T. Organisciak, R.M. Darrow, Y.L. Jiang, G.E. Marak, and J.C. Blanks, Protection by dimethylthiourea against retinal light damage in rats, Invest. Ophthalmo. Vis. Sci. 33:1599 (1992).Google Scholar
  51. 51.
    C.E. Reme, U.F. Braschler, J. Roberts, and J. Dillon, Light damage in the rat retina: Effect of a radioprotective agent (WR-77913) on acute rod outer segment disk disruptions, Photochem. Photobiol. 54:137 (1991).CrossRefPubMedGoogle Scholar
  52. 52.
    B.B. Aggarwal, A.T. Quintanilha, R. Cammack, and L. Packer, Damage to mitochondrial electron transport and energy coupling by visible light. Biochimica et Biophysica Acta. 502:367 (1978).CrossRefPubMedGoogle Scholar
  53. 53.
    H. Ninnemann, W.L. Butler, and B.L. Epel, Inhibition of respiration and destruction of cytochrome A3 in mitochondria by light in mitochondria and cytochrome oxidase from beef heart, Biochem. Biophys. Acta. 205:507 (1970).CrossRefPubMedGoogle Scholar
  54. 54.
    H.A. Hansson, A histochemical study of oxidative enzymes in rat retina damaged by visible light, Exp. Eye Res. 9:285 (1970).CrossRefPubMedGoogle Scholar
  55. 55.
    E. Chen, P.G. Soderberg, and B. Lindstrom, Cytochrome oxidase activity in rat retina after exposure to 404 nm blue light, Curr. Eye Res. 11:825 (1992).CrossRefPubMedGoogle Scholar
  56. 56.
    F.L. Ferris, III, S.L. Fine, and L. Hyman, Age-related macular degeneration and blindness due to neovascular maculopathy, Arch. Ophthalmol. 102:1640 (1984).CrossRefPubMedGoogle Scholar
  57. 57.
    B.E. Klein, and R. Klein, Cataracts and macular degeneration in older Americans, Arch. Ophthalmol. 100:571 (1982).CrossRefPubMedGoogle Scholar
  58. 58.
    J. Goldberg, G. Flowerdew, E. Smith, J.A. Brody, and M.O.M. Tso, Factors associated with age-related macular degeneration, Am. J. Epidemiology. 128:700 (1988).Google Scholar
  59. 59.
    R. Klein, B.E. Klein, K.L.P. Linton, and D.L. DeMets, The Beaver Dam eye study: the relation of age-related maculopathy to smoking, Am. J. Epidemiology. 137:190 (1993).Google Scholar
  60. 60.
    H.A. Kahn, H.M. Leibowitz, J.P. Ganley, M.M. Kini, T. Colton, R.S. Nickerson, and T.R. Dawber, The Framingham Eye Study II. Association of ophthalmic pathology with single variables previously measured in the Framingham Heart Study, Am. J. Epidemiology. 106:33 (1977).Google Scholar
  61. 61.
    Eye Disease Case-Control Study Group, Risk factors for neovascular age-related macular degeneration, Arch. Ophthalmol. 110:1701 (1992).Google Scholar
  62. 62.
    Eye Disease Case-Control Study Group, Antioxidant status and neovascular age-related macular degeneration, Arch. Ophthalmol. 111:104 (1993).Google Scholar
  63. 63.
    D.A. Newsom, M. Swartz, N.C. Leone, R.C. Elston, and E. Miller, Arch. Ophthalmol. 106:192 (1988).CrossRefGoogle Scholar
  64. 64.
    L. C. Chambley, Impressions of eye diseases among Rhodesian blacks in Marshonland, S. Africa Med. J. 52:316 (1977).Google Scholar
  65. 65.
    I. Mann. “Culture, Race, Climate and Eye Disease,“ Charles C. Thomas, Springfield, IL (1966).Google Scholar
  66. 66.
    L.G. Hyman, A.M. Lillienfeld, F.L. Ferris, and S.L. Fine, Senile macular degeneration: a case-control study, Am. J. Epidemiology. 118:213 (1983).Google Scholar
  67. 67.
    C.K. Chow, R.R. Thacker, C. Changchit, R.B. Bridges, S.R. Rehm, J. Humble, and J. Turbek, Lower levels of vitamin C and carotenes in plasma of cigarette smokers, J. Am. Coll. Nutr. 5:305 (1986).PubMedGoogle Scholar
  68. 68.
    W.S. Stryker, L.A. Kaplan, E.A. Stein, M.J. Stampfer, A. Sober, and W.C. Willett, The relation of diet, cigarette smoking, and alcohol consumption to plasma beta-carotene and alpha-tocopherol levels, Am. J. Epidemiology. 127:283 (1988).Google Scholar
  69. 69.
    W.A. Pryor, K.I. Terauchi, and W.H. Davies, Jr., Electron spin resonance (ESR) study of cigarette smoke by use of spin trapping techniques, Environ. Health Perspect. 16:161 (1976).CrossRefPubMedGoogle Scholar
  70. 70.
    S. Prashar, S.S. Pandav, A. Gupta, and R. Nath, R., Antioxidant enzymes in RBCs as a biological index of age related macular degeneration, Acta Ophthalmol. 71:214 (1993).Google Scholar
  71. 71.
    M. De La Paz and R.E. Anderson, Region and age-dependent variation in susceptibility of the human retina to lipid peroxidation. Invest. Ophthalmol. Vis. Sci. 33:3497 (1992).Google Scholar
  72. 72.
    R.D. Sperduto, F.L. Ferris, and N. Kurinij, Do we have a nutritional treatment for age-related cataract or macular degeneration, Arch. Ophthalmol. 108:1403 (1990).CrossRefPubMedGoogle Scholar
  73. 73.
    Z. Dische and H. Zil, Studies on the oxidation of cysteine to cystine in lens proteins during cataract formation, Am. J. Ophthalmol. 34:104 (1951).PubMedGoogle Scholar
  74. 74.
    A. Spector, G.M. Wang, R.R. Wang, W.H. Garner, and H. Moll, The prevention of cataract by oxidative stress in cultured rat lenses. I. H2O2 and photochemically induced cataract, Cur. Eye Res. 12:163 (1993).CrossRefGoogle Scholar
  75. 75.
    M. Wilczek and H. Zygulska-Machowa, Zawartosc witaminy C W. roznych typack zaem, J. Klin. Oczna 38:477 (1968).Google Scholar
  76. 76.
    V.N. Reddy, Glutathione and its function in the lens—an overview, Exp. Eye Res. 150:771 (1990).CrossRefGoogle Scholar
  77. 77.
    E.R. Berman, “Biochemistry of the Eye,” Plenum Press, New York (1991).Google Scholar
  78. 78.
    W.B. Rathbun, A. J. Schmidt, and A.M. Holleschau, Activity loss of glutathione synthesis enzymes associated with human subcapsular cataract, Invest. Ophthalmol. Vis. Sci. 34:2049 (1993).PubMedGoogle Scholar
  79. 79.
    P.Y. Xie, A. Kanai, A. Nakajima, S. Kitahara, A. Ohtsu, and K. Fujii, Glutathione and glutathione-related enzymes in human cataractous lenses, Ophthalmol. Res. 23:133 (1991).CrossRefGoogle Scholar
  80. 80.
    H. Pau, P. Graf, and H. Sies, Glutathione levels in human lens: regional distribution in different forms of cataract, Exp. Eye Res. 50:17 (1990).CrossRefPubMedGoogle Scholar
  81. 81.
    S.E. Hankinson, M.J. Stampfer, J.M. Seddon, G.A. Colditz, B. Rosner, F.E. Speizer, and W.C. Willett, Nutrient intake and cataract extraction in women: a prospective study, Brit. Med. J. 305:335 (1992).CrossRefPubMedGoogle Scholar
  82. 82.
    P. Knekt, M. Heliövaara, A. Rissanen, A. Aromaa, R.K. Aaran, Serum antioxidant vitamins and risk of cataract, BMJ. 305:1392 (1992).CrossRefPubMedGoogle Scholar
  83. 83.
    P.F. Jacques, L.T. Chylack Jr., R.B. McGandy, and S.C. Hartz, Antioxidant status in persons with and without senile cataract, Arch. Ophthalmol. 106:337 (1988).CrossRefPubMedGoogle Scholar
  84. 84.
    M.C. Leske, L.T. Chylack Jr., and S.Y. Wu, The lens opacities case-control study, risk factors for cataract, Arch. Ophthalmol. 109:244 (1991).CrossRefPubMedGoogle Scholar
  85. 85.
    J.M.C.D. Robertson, A.P. Dormer, and J.R. Trevithick, Vitamin E intake and riske of cataracts in humans, Ann. N.Y. Acad. Sci. 570:372 (1989).CrossRefPubMedGoogle Scholar
  86. 86.
    A. Taylor, Role of nutrients in delaying cataracts, Ann. N.Y. Acad. Sci. 669:111 (1992).CrossRefPubMedGoogle Scholar
  87. 87.
    W.G. Christen, J.E. Manson, J.M. Seddon, R.J. Glynn, J.E. Buring, B. Rosner, and C.H. Hennekens, A prospective study of cigarette smiking and risk of cataract in men, JAMA. 268:989.Google Scholar
  88. 88.
    S.E. Hankinson, W.C. Willett, G.A. Colditz, J.M. Seddon, B. Rosner, F.E. Speizer, and M.J. Stampfer, A prospective study of cigarette smoking and risk of cataract surgery in women, JAMA. 268:994 (1992).CrossRefPubMedGoogle Scholar
  89. 89.
    B.N. Ames, M.K. Shigenaga, T.M. Hagen, Oxidants, antioxidants, and the degenraive diseases of aging, Proc. Natl. Acad. Sci. 90:7915 (1993).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Robert E. Anderson
    • 1
  • Frank L. Kretzer
    • 1
  • Laurence M. Rapp
    • 1
  1. 1.Cullen Eye InstituteBaylor College of MedicineHoustonUSA

Personalised recommendations