Free Radicals and the Pathogenesis of Neuronal Death: Cooperative Role of Excitatory Amino Acids

  • Domenico E. Pellegrini-Giampietro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


The potential role of oxygen-derived free radicals in the pathogenesis of neuropsychiatric diseases has been thoroughly discussed in the past few years1, 2, 3. The neurotoxic consequences of superoxide anion, hydrogen peroxide and hydroxyl radical formation have been described, as well as their relevance to abnormal conditions of the central nervous system, such as hyperoxia, hemorrhage, trauma, and aging. A separate line of investigation over the last ten years has established that excessive release of the excitatory neurotransmitter glutamate and sustained activation of glutamate receptors may also be responsible for neuronal degeneration associated with epilepsy, cerebral ischemia, hypoglycemia and other neurodegenerative diseases4, 5, 6. It is now emerging that free radical formation and glutamate receptor activation may act in concert, cooperating in the genesis and propagation of neuronal damage7, 8, 9. The goal of this report is to examine the potential relationship between these two pathogenic events in neurological disease, with particular stress on mechanisms underlying post-ischemic brain damage.


Amyotrophic Lateral Sclerosis NMDA Receptor Cerebral Ischemia Glutamate Receptor AMPA Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Kontos, Oxygen radicals in CNS damage, Chem.-Biol. Interact. 72:229 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    J.B. Lohr, Oxygen radicals and neuropsychiatric illness. Some speculations, Arch. Gen. Psychiatry 48:1097 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    C.W. Olanow, A radical hypothesis for neurodegeneration, Trends Neurosci. 16:439 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    S.M. Rothman and J.W. Olney, Excitotoxicity and the NMDA receptor, Trends Neurosci. 10:299 (1987).CrossRefGoogle Scholar
  5. 5.
    D.W. Choi, Glutamate neurotoxicity and diseases of the nervous system, Neuron 1:623 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    B. Meldrum and J. Garthwaite, Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci. 11:379 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    S.C. Bondy and C.P. LeBel, The relationship between excitotoxicity and oxidative stress in the central nervous system, Free Radical Biol. Med. 14:633 (1993).CrossRefGoogle Scholar
  8. 8.
    J.T. Coyle and P. Puttfarcken, Oxidative stress, glutamate and neurodegenerative disorders, Science 262:689 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    G.J. Lees, Contributory mechanisms in the causation of neurodegenerative disorders, Neuroscience 54:287 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    H.B. Demopoulos, E.S. Flamm, D.D. Pietronigro, and M.L. Seligman, The free radical pathology and the microcirculation in the major central nervous system disorders, Acta Physiol. Scand. Suppl. 492:91 (1980).Google Scholar
  11. 11.
    B. Halliwell, Reactive oxygen species and the central nervous system, J. Neurochem. 59:1609 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    J.P. Kehrer, Free radicals as mediators of tissue injury and disease, Crit. Rev. Toxicol. 23:21 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Fonnum, Glutamate: a neurotransmitter in mammalian brain, J. Neurochem. 42:1 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    G.L. Collingridge and R.A.J. Lester, Excitatory amino acid receptors in the vertebrate central nervous system, Pharmacol. Rev. 40:143 (1989).Google Scholar
  15. 15.
    D.T. Monaghan, R.J. Bridges, and C.W. Cotman, The excitatory amino acid receptors: their classes, pharmacology and distinct properties in the function of the central nervous system, Ann. Rev. Pharmacol. Toxicol 29:365 (1989).CrossRefGoogle Scholar
  16. 16.
    D. Nicholls and D. Attwell, The release and uptake of excitatory amino acids, Trends Pharmacol. Sci. 11:462 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    J.W. Olney, Excitotoxins: an overview, in: “Excitotoxins,” K. Fuxe, P. Roberts, and R. Schwarcz, ed., Macmillan, London (1983).Google Scholar
  18. 18.
    D.D. Schoepp and P.J. Conn, Metabotropic glutamate receptors in brain function and pathology, Trends Pharmacol. Sci. 14:13 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    G.P. Gasic and M. Hollmann, Molecular neurobiology of glutamate receptors, Ann. Rev. Physiol. 54:507 (1992).CrossRefGoogle Scholar
  20. 20.
    S. Nakanishi, Molecular diversity of glutamate receptors and implications for brain function, Science 258:597 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    B. Sommer and P.H. Seeburg, Glutamate receptor channels: novel properties and new clones, Trends Pharmacol. Sci. 13:291 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    J.A. Dykens, A. Stern, and E. Trenkner, Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury, J. Neurochem. 49:1222 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    R.J. Miller, Metabotropic excitatory amino acid receptors reveal their true colors, Trends Pharmacol. Sci. 12:365 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Dumuis, M. Sebben, L. Haynes, J.-P. Pin, and J. Bockaert, NMDA receptors activate the arachidonic acid cascade system in striatal neurons, Nature 336:68 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Lafon-Cazal, S. Pietri, M. Culcasi, and J. Bockaert, NMDA-dependent superoxide production and neurotoxicity, Nature 364:535 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Monyer, M. Hartley, and D.W. Choi, 21-Aminosteroids attenuate exitotoxic neuronal injury in cortical cell cultures, Neuron 5:121 (1990).PubMedCrossRefGoogle Scholar
  27. 27.
    V.L. Dawson, T.M. Dawson, E.D. London, D.S. Bredt, and S.H. Snyder, Nitric oxide mediates glutamate neurotoxicity in primary cortical neurons, Proc. Natl. Acad. Sci. USA 88:6368 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    D.E. Pellegrini-Giampietro, G. Cherici, M. Alesiani, V. Carlà, and F. Moroni, Excitatory amino acid release from rat hippocampal slices as a consequence of free radical formation, J. Neurochem. 51:1960 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    D.E. Pellegrini-Giampietro, G. Cherici, M. Alesiani, V. Carlà, and F. Moroni, Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage, J. Neurosci. 10:1035 (1990).PubMedGoogle Scholar
  30. 30.
    B. Barbour, M. Szatkowski, N. Ingledew, and D. Attwell, Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells, Nature 342:918 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Volterra, D. Trotti, P. Cassutti, C. Tromba, A. Salvaggio, R.C. Melcangi, and G. Racagni, High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes, J. Neurochem. 59:600 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Jenner, Oxidative stress as a cause of Parkinson’s disease, Acta Neurol. Scand. 84(suppl. 136): 6 (1991).CrossRefGoogle Scholar
  33. 33.
    J.D. Adams and I.N. Odunze, Biochemical mechanisms of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity, Biochem. Pharmacol. 41:1099 (1991).PubMedCrossRefGoogle Scholar
  34. 34.
    K.F. Tipton and T.P. Singer, Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds, J. Neurochem. 61:1191 (1993).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Przedborski, V. Kostic, V. Jackson-Lewis, et al., Transgenic mice with increased Cu/Znsuperoxide dismutase activity are resistant to N-methyl-4-phenyl-l,2,3,6-tetrahydropyridineinduced neurotoxicity, J. Neurosci. 12:1658 (1992).PubMedGoogle Scholar
  36. 36.
    L. Turski, K. Bressler, K.-J. Rettig, P.-A. Loschmann, and H. Wachtel, Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists, Nature 349:414 (1991).PubMedCrossRefGoogle Scholar
  37. 37.
    T. Klockgether, L. Turski, T. Honoré, Z. Zhang, D.M. Gash, R. Kurlan, and J.T. Greenamyre, The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys, Ann. Neurol. 30:717 (1991).PubMedCrossRefGoogle Scholar
  38. 38.
    P.S. Spencer, P.B. Nunn, J. Hugon, A.C. Ludolph, S.M. Ross, D.N. Roy, and R.C. Robertson, Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin, Science 237:517 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    J.D. Rothstein, L. Jin, M. Dykes-Hoberg, and R.W. Kuncl, Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity, Proc. Natl. Acad. Sci. USA 90:6591 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    D.R. Rosen, T. Siddique, D. Patterson, et al., Mutations in Cu/Zn superoxide dismutase genes are associated with familial amyotrophic lateral sclerosis, Nature 362:59 (1993).PubMedCrossRefGoogle Scholar
  41. 41.
    D. Choi, Cerebral hypoxia: some new approaches and unanswered questions, J. Neurosci. 10:2493 (1990).PubMedGoogle Scholar
  42. 42.
    W. Pulsinelli, Pathophysiology of acute ischaemic stroke, Lancet 339:533 (1992).PubMedCrossRefGoogle Scholar
  43. 43.
    B. Peruche and J. Krieglstein, Mechanisms of drug actions against neuronal damage caused by ischemia — An overview, Prog. Neuropsychopharmacol. Biol. Psychiat. 17:21 (1993).CrossRefGoogle Scholar
  44. 44.
    J.M. Braughler and E.D. Hall, Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation, Free Radical Biol. Med. 6:289 (1989).CrossRefGoogle Scholar
  45. 45.
    R.A. Floyd, Role of oxygen free radicals in carcinogenesis and brain ischemia, Faseb J. 4:2587 (1990).PubMedGoogle Scholar
  46. 46.
    J.R. Traystman, J.R. Kirsch, and R.C. Koehler, Oxygen radical mechanisms of brain injury following ischemia and reperfusion, J. Appl. Physiol. 71:1185 (1991).PubMedGoogle Scholar
  47. 47.
    H. Benveniste, J. Drejer, A. Schousboe, and N. Diemer, Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem. 43:1369 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    M.J. Sheardown, E.O. Nielsen, A.J. Hansen, P. Jacobsen, and T. Honoré, 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo (F)quinoxaline: a neuroprotectant for cerebral ischemia, Science 247:571 (1990).PubMedCrossRefGoogle Scholar
  49. 49.
    A.M. Buchan, H. Li, and W. Pulsinelli, The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats, J. Neurosci. 11:1049 (1991).PubMedGoogle Scholar
  50. 50.
    D.K.J.E. Von Lubitz, R.C.-S. Lin, R.J. McKenzie, T.M. Devlin, R.T. McCabe, and P. Skolnick, A novel treatment of global cerebral ischemia with a glycine partial agonist, Europ. J. Pharmacol. 219:153 (1992).CrossRefGoogle Scholar
  51. 51.
    C.N. Oliver, P.E. Starke-Reed, E.R. Stadtman, G.J. Liu, J.M. Carney, and R.A. Floyd, Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain, Proc. Natl. Acad. Sci. USA 87:5144 (1990).PubMedCrossRefGoogle Scholar
  52. 52.
    A. Sakamoto, S.T. Ohnishi, T. Ohnishi, and R. Ogawa, Relationship between free radical production and lipis peroxidation during ischemia-reperfusion injury in the rat brain, Brain Res. 554:186 (1991).PubMedCrossRefGoogle Scholar
  53. 53.
    H. Hara, K. Kogure, H. Kato, A. Ozaki, and T. Sukamoto, Amelioration of brain damage after focal ischemia in the rat by a novel inhibitor of lipid peroxidation, Europ. J. Pharmacol. 197:75 (1991).CrossRefGoogle Scholar
  54. 54.
    E.D. Hall, K.E. Pazara, and J.M. Braughler, 21-Aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils, Stroke 19:997 (1988).PubMedCrossRefGoogle Scholar
  55. 55.
    C. Clough-Helfman and J.W. Phillis, The free radical trapping agent N-tert-butyl-α-phenylnitrone (PBN) attenuates cerebral ischaemic injury in gerbils, Free Radical Res. Commun. 15:177 (1991).CrossRefGoogle Scholar
  56. 56.
    S. Imaizumi, V. Woolworth, R.A. Fishman, and P.H. Chan, Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats, Stroke 21:1312 (1990).PubMedCrossRefGoogle Scholar
  57. 57.
    H. Kinouchi, C.J. Epstein, T. Mizui, E. Carlson, S.F. Chen, and P.H. Chan, Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase, Proc. Natl. Acad. Sci. USA 88:11158 (1991).PubMedCrossRefGoogle Scholar
  58. 58.
    D.E. Pellegrini-Giampietro, R.S. Zukin, M.V.L. Bennett, S. Cho, and W.A. Pulsinelli, Switch in glutamate receptor subunit gene expression in CAI subfield of hippocampus following global ischemia in rats, Proc. Natl. Acad. Sci. USA 89:10499 (1992).PubMedCrossRefGoogle Scholar
  59. 59.
    W.A. Pulsinelli, J.B. Brierley, and F. Plum, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol. 11:491 (1982).PubMedCrossRefGoogle Scholar
  60. 60.
    J.K. Deshpande, B.K. Siesjö, and T. Wieloch, Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia, J. Cereb. Blood Flow Metabol. 7:89 (1987).CrossRefGoogle Scholar
  61. 61.
    S.M. Oh and A.L. Betz, Interaction between free radicals and excitatory amino acids in the formation of ischemic brain edema in rats, Stroke 22:915 (1991).PubMedCrossRefGoogle Scholar
  62. 62.
    F. Moroni, M. Alesiani, A. Galli, et al., Thiokynurenates: a new group of antagonists of the glycine modulatory site of the NMDA receptor, Europ. J. Pharmacol. 199:227 (1991).CrossRefGoogle Scholar
  63. 63.
    F. Moroni, M. Alesiani, L. Facci, et al., Thiokynurenates prevent excitotoxic neuronal death in vitro and in vivo by acting as glycine antagonists and as inhibitors of lipid peroxidation, Europ. J. Pharmacol. 218:145 (1992).CrossRefGoogle Scholar
  64. 64.
    J. Chen, S. Graham, F. Moroni, and R. Simon, A study of the dose-dependency of a glycine receptor antagonist in focal ischemia, J. Pharmacol. Exp. Ther. 267:937 (1993).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Domenico E. Pellegrini-Giampietro
    • 1
  1. 1.Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly

Personalised recommendations