Free Radical Scavenging and Antioxidant Activity of Plant Flavonoids

  • Chithan Kandaswami
  • Elliott MiddletonJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


The occurrence of reactive oxygen species (ROS), termed as prooxidants, is a characteristic of normal aerobic organisms. The term “reactive oxygen species” collectively denotes oxygen-centered radicals such as superoxide (O2·-)and hydroxyl (·OH), as well as nonradical species derived from oxygen, such as hydrogen peroxide (H2O2), singlet oxygen (1ΔgO2) and hypochlorous acid (HOC1). Radical reactions are central to the maintenance of homeostasis in biological systems. Radical species perform a cardinal role in many physiological processes such as cytochrome P450-mediated oxidative transformation reactions, a plethora of enzymic oxidation reactions, oxidative phosphorylation, regulation of the tone of smooth muscle, and killing of microorganisms.1–3 Excessive generation of free radicals can have deleterious biological consequences.4–6 Organisms are equipped with an armamentarium of defense systems, termed antioxidants in order to safeguard them against the onslaught of ROS.1–3,7 When the generation of prooxidants overwhelms the capacity of antioxidant defense systems oxidative stress ensues. This can cause tissue damage leading to pathophysiological events. ROS play a pivotal role in the action of numerous foreign compounds (xenobiotics). Their increased production seems to accompany most forms of tissue injury.4,5 Whether sustained and increased production of ROS is a primary event in human disease progression or a secondary consequence of tissue injury has been discussed.5,6 Whatever may be the case, the formation of free radicals has been implicated in a multitude of disease states ranging from inflammatory/immune injury to myocardial infarction and cancer.


Ascorbic Acid Xanthine Oxidase Inhibit Lipid Peroxidation Cytochrome P450 Reductase Dehydroascorbic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Sies. “Oxidative Stress,” Academic Press, London (1985).Google Scholar
  2. 2.
    H. Sies, Oxidative stress: from basic research to clinical application. Am. J. Med. 91: 3C–31S (1991).CrossRefGoogle Scholar
  3. 3.
    A. Blast, R.M.M. Guido, M.M. Haenen, J.A. Cees and J.A. Doelman, Oxidants and antioxidants: state of the art. Am. J. Med., 91:3C–2S (1991).Google Scholar
  4. 4.
    B. Halliwell and J.M.C. Gutteridge, in: “Methods in Enzymology,” L. Packer, and A.N. Glazer, ed., Academic Press, San Diego, Vol. 186, p. 1 (1990).Google Scholar
  5. 5.
    B. Halliwell, J.M.C. Gutteridge and C.E. Cross, Free radicals, antioxidants, and human disease: where are we now? J. Lab Clin. Med., 119:598 (1992).PubMedGoogle Scholar
  6. 6.
    B. Halliwell, Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med., 91:3C–14S (1991).CrossRefGoogle Scholar
  7. 7.
    N.I. Krinsky, Mechanism of action of biological antioxidants. Proc. Soc. Exp. Biol. Med., 200:248 (1992).PubMedGoogle Scholar
  8. 8.
    J.B. Harborne, T.J. Mabry, M. Mabry. “The Flavonoids,” Academic Press, New York (1975).Google Scholar
  9. 9.
    J.B. Harborne, T.J. Mabry. “The Flavonoids: Advances in Research,” Chapman and Hall, London (1982).Google Scholar
  10. 10.
    J.B. Harborne. “The Flavonoids: Advances in Research Since 1980,” Chapman and Hall, London (1988).Google Scholar
  11. 11.
    J.B. Harborne. “The Flavonoids: Advances in Research Since 1986,” Chapman and Hall, London (1993).Google Scholar
  12. 12.
    J.B. Harborne, in: “Plant Flavonoids in Biology and Medicine: Biochemical Pharmacological and Structure-Activity Relationships,” V. Cody, E. Middleton and J.B. Harborne, ed., Alan R. Liss, New York, p. 15 (1986).Google Scholar
  13. 13.
    J.B. Harborne, in: “Plant Flavonoids in Biology and Medicine: Biochemical, Cellular and Medicinal Properties,” V. Cody, E. Middleton and J.B. Harborne, ed., Alan R. Liss, New York, p. 17 (1988).Google Scholar
  14. 14.
    J. Ebel, K. Hahlbrock, in: “The Flavonoids: Advances in Research,” J.B. Harborne and T.J. Marby, ed., Chapman and Hall, London, p. 641 (1982).Google Scholar
  15. 15.
    R.R. Scheline. “Handbook of Mammalian Metabolism of Plant Compounds,” CRC Press, Boca Raton (1991).Google Scholar
  16. 16.
    R. Brouillard and A. Cheminant, in: “Plant Flavonoids in Biology and Medicine: Biochemical, Cellular and Medicinal Properties,” V. Cody, E. Middleton and J.B. Harborne, ed., Alan R. Liss, New York, p. 93 (1988).Google Scholar
  17. 17.
    K. Hermann, Flavonols and flavones in food plants: a review. J. Food Technol. 11:433 (1976).CrossRefGoogle Scholar
  18. 18.
    J. Kuhnau, The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet 24:117 (1976).PubMedGoogle Scholar
  19. 19.
    C.A.B. Clemetson. “Vitamin C,” CRC Press, Boca Raton (1989).Google Scholar
  20. 20.
    W.S. Pierpoint, in: “Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-Activity Relationships,“ V. Cody, E. Middleton and J.B. Harborne, ed., Alan R. Liss, New York, p. 125 (1986).Google Scholar
  21. 21.
    M.G.L. Hertog, P.C.H. Hollman, M.B. Katan and D. Kromhout, Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr. Cancer 20: 21 (1993).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Middleton, Jr. and C. Kandaswami, in: “The Flavonoids: Advances in Research Since 1986,” J.B. Harborne, ed., Chapman and Hall, London, p. 619 (1993).Google Scholar
  23. 23.
    E. Middleton, Jr. and C. Kandaswami, Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 43:1167 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    D.E. Pratt, in: “Phenolic Compounds in Food and Their Effects on Health II,” M-T. Huang, C-H. Ho and C.Y. Lee, ed., American Chemical Society, Washington, p. 54 (1992).CrossRefGoogle Scholar
  25. 25.
    R.E. Hughes and H.K. Wilson, in: “Progress in Medicinal Chemistry,” G.P. Ellis and G.B. West, ed., Elsevier, Amsterdam, Vol. 14, p. 285 (1977).Google Scholar
  26. 26.
    C.H. Lea, P.A.T. Swoboda, On the antioxidant activity of the flavonols, gossypetin and quercetagetin. Chew. Ind. 1426 (1956).Google Scholar
  27. 27.
    J. Torel, J. Cillard and P. Cillard, Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 25:383 (1986).CrossRefGoogle Scholar
  28. 28.
    J.W. McClure, Physiology and Functions of Flavonoids, in: “The Flavonoids,” J.B. Harborne, T.J. Mabry and H. Mabry, ed., Academic Press, New York, p. 970 (1975).Google Scholar
  29. 29.
    C.A.B. Clemetson and L. Anderson, Plant polyphenols as antioxidants for ascorbic acid. Ann. NY Acad. Sci. 136:341 (1966).PubMedCrossRefGoogle Scholar
  30. 30.
    E. Jones and R.E. Hughes, The influence of bioflavonoids on the absorption of vitamin C. IRCS Med. Sci. 12:320 (1984).Google Scholar
  31. 31.
    B.M. Babior and R.C. Woodman, Chronic granulomatous disease. Semin. Hematol. 27:247 (1990).PubMedGoogle Scholar
  32. 32.
    J.T. Curnutte and B.M. Babior, Chronic granulomatous disease. Adv. Hum. Genet. 16:229 (1987).PubMedGoogle Scholar
  33. 33.
    S.S. Weiss, Tissue destruction by neutrophils. N Engl. J. Med. 320:365 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    S.M. Michel and C. Bors, Reactions of NO with 02 •— implications for the action of endothelium-derived relaxing factor (EDRF). Free Radical Res. Commun. 10:221 (1991).Google Scholar
  35. 35.
    J.S. Beckman, T.W. Beckman, J. Chen, et al., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:1620 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    M.A. Marietta, Nitric oxide: Biosynthesis and biological significance. Trends Biochem. Sci. 14:488 (1989).CrossRefGoogle Scholar
  37. 37.
    S. Moncada, R.M.J. Plamer and E.A. Higgs, Biosynthesis of nitric oxide from Larginine: a pathway for the regulation of cell function and communication. Biochem. Pharmacol. 38:1709 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    R.J. Gryglewski, R.M.J. Palmer and S. Moncada, Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature (London) 320:454 (1986).CrossRefGoogle Scholar
  39. 39.
    F.R.M. Laurindo, P.L. daLuz, L. Uint, et al., Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Crculation 83:1705 (1991).CrossRefGoogle Scholar
  40. 40.
    J.C. Fantone and P.A. Ward, Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Path. 107:397 (1982).Google Scholar
  41. 41.
    W.W. Busse, D.E. Kopp, and E. Middleton, Flavonoid modulation of human neutrophil function. J. Allergy Clin. Immunol 73:801 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    B.A. ’T Hart, T. Ram, I.P. Vai Ching, H. Van Di and R.P. Labadie, How flavonoids inhibit the generation of luminol-dependent chemiluminescence by activated human neutrophils. Chem. Biol. Interactions 73:323 (1990).CrossRefGoogle Scholar
  43. 43.
    A.I. Tauber, J.R. Fay and M.A. Marietta, Flavonoid inhibition of the human neutrophil NADPH-oxidase. Biochem. Pharmacol. 33:1367 (1984).PubMedCrossRefGoogle Scholar
  44. 44.
    P.C. Ferriola, V. Cody and E. Middleton. Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem. Pharmacol. 38:1617 (1989).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Pincemail, C. Deby, A. Thirion, M. de Bruyn-Dister and R. Goutier, Human myeloperoxidase activity is inhibited in vitroby quercetin. Comparison with three related compounds. Experientia 44:450 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    C.C. Winterbourn, Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim. Biophys. Acta 840:204 (1985).PubMedCrossRefGoogle Scholar
  47. 47.
    V. Stolc, Characterization of iodoproteins secreted by phagocytosing human polymorphonuclear leukocytes. J. Biol. Chem. 254:1273 (1979).PubMedGoogle Scholar
  48. 48.
    W.D. Blackburn, L.W. Heck and R.W. Wallace, The bioflavonoid quercetin inhibits neutrophil degranulation, superoxide production, and the phosphorylation of specific neutrophil proteins. Biochem. Biophys. Res. Commun. 144:1229 (1987).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Ogasawara, T. Fujitani, G. Drzewiecki and E. Middleton, The role of hydrogen peroxide in basophil histamine release and the effect of selected flavonoids. J. Allergy Clin. Immunol. 78:321 (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    B. Halliwell and S. Chirico, Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57:715S (1993).PubMedGoogle Scholar
  51. 51.
    H. Esterbauer, H. Zollner and R.J. Schaur, Hydroxyalkenals: cytotoxic products of lipid peroxidation. ISI Atlas Sci. Biochem. 1:311 (1988).Google Scholar
  52. 52.
    P.A. Cerutti, Prooxidant states and tumor promotion. Science, 227:375 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    J.S. Bus and J.E. Gibson, Lipid peroxidation and its role in toxicology. Rev. Biochem. Toxicol. 1:125 (1979).Google Scholar
  54. 54.
    G.L. Plaa and H. Witschi, Chemicals, drugs, and lipid peroxidation. Ann. Rev. Pharmacol.Toxicol. 16:125 (1976).CrossRefGoogle Scholar
  55. 55.
    R.G. Recknagel and E.A. Glende, Lipid peroxidation: a specific form of cellular injury. Handbook of Physiol. 9:591 (1979).Google Scholar
  56. 56.
    A.L. Tappel, Protection against free radical lipid peroxidation reactions. Exp. Med. Biol. 97:111 (1978).Google Scholar
  57. 57.
    A. Letan, The relation of structure to antioxidant activity of quercetin and some of its derivatives. II. Secondary (metal-complexing) activity. J. Food Sci. 31:518 (1966).CrossRefGoogle Scholar
  58. 58.
    A. Bindoli, L. Cavallin and N. Siliprandi, Inhibitory action of Silymarin of lipid peroxide formation in rat liver mitochondria and microsomes. Biochem. Pharmacol. 26:2405 (1977).PubMedCrossRefGoogle Scholar
  59. 59.
    L. Cavallini, A. Bindoli and N. Siliprandi, Comparative evaluation of antiperoxidative action of Silymarin and other flavonoids. Pharmacol. Res. Comm. 10:133 (1978).CrossRefGoogle Scholar
  60. 60.
    U. Takahama, Suppression of lipid photoperoxidation by quercetin and its glycosides in spinach chloroplasts. Photochem. Photobiol. 38:363 (1983).CrossRefGoogle Scholar
  61. 61.
    Y. Sorata, U. Takahama and M. Kimura, Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematophorphyrin. Biochim. Biophys. Acta 799:313 (1984).PubMedCrossRefGoogle Scholar
  62. 62.
    I. Maridonneau-Parini, P. Braquet and R.P. Garay, Heterogeneous effect of flavonoids on K+ loss and lipid peroxidation induced by oxygen-free radicals in human red cells. Pharmac. Res. Commun. 18:61 (1986).CrossRefGoogle Scholar
  63. 63.
    M. Young and C.P. Sieger, Inhibitory action of some flavonoids on enhanced spontaneous lipid peroxidation following glutathione depletion. Planta Med. 43:240 (1981).CrossRefGoogle Scholar
  64. 64.
    L.A. Videla, V. Fernandez, A. Valenzuela and G. Ugarte, Effect of (+)-cyanidanol-3 on the changes in liver glutathione content and lipoperoxidation induced by acute ethanol administration in the rat. Pharmacology 22:343 (1981).PubMedCrossRefGoogle Scholar
  65. 65.
    A. Muller and H. Sies, Role of alcohol dehydrogenase activity and of acetaldehyde in ethane and pentane production by isolated perfused rat liver. Biochem. J. 206:153 (1981).Google Scholar
  66. 66.
    L.A. Videla, A. Valenzuela, V. Fernandez and A. Kriz, Differential lipid peroxidative response of rat liver and lung tissues to glutathione depletion induced in vivo by diethyl maleate: effect of the antioxidant flavonoid (+)-cyanidanol-3. Biochem. Int. 10:425 (1985).PubMedGoogle Scholar
  67. 67.
    A. Valenzuela and R. Guerra, Differential effect of silybin on the Fe2+-ADP and t-butyl hydroperoxide-induced microsomal lipid peroxidation. Experientia 42:139 (1986).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Nairn, B. Gestetner, A. Bondi and Y. Birk, Antioxidative and antihemolytic activities of soybean isoflavones. J. Agric. Food Chem. 24:1174 (1975).Google Scholar
  69. 69.
    H.C. Jha, G. von Recklinghausen and F. Zilliken, Inhibition of in vitro microsomal lipid peroxidation by isoflavonoids. Biochem. Pharmacol. 34:1367 (1985).PubMedCrossRefGoogle Scholar
  70. 70.
    B.J.F. Hudson and J.I. Lewis, Polyhydroxy flavonoid antioxidants for edible oils. Structural criteria for activity. Food Chem. 10:47–55 (1965).CrossRefGoogle Scholar
  71. 71.
    T.H. Simpson and N. Uri, Hydroxyflavones as inhibitors of the aerobic oxidation of unsaturated fatty acids. Chem. Ind. 956 (1956).Google Scholar
  72. 72.
    A.C. Mehta and T.R. Seshadri, Flavonoids as antioxidants. J. Sci. Ind. Research 18B:24 (1959).Google Scholar
  73. 73.
    A. Heimann, W. Heimann, M. Gremminger and H.H. Holman, Quercetin as an antioxidant. Fette u. Soifen 55:394 (1953).CrossRefGoogle Scholar
  74. 74.
    Y. Kimura, M. Kubo, T. Tani, S. Arichi and H. Okuda, Studies on Scutellariae radix IV. Effects on lipid peroxidation in rat liver. Chem. Pharm. Bull. (Tokyo) 29:2610 (1981).CrossRefGoogle Scholar
  75. 75.
    Y. Kimura, H. Okuda, Z. Taira, N. Shoji, T. Takemoto and S. Arichi, Studies on Scutellariae radix IX. New component inhibiting lipid peroxidation in rat liver. Planta Med. 50:290 (1984).PubMedCrossRefGoogle Scholar
  76. 76.
    J. Baumann, G. Wurm and F.V. Bruchhausen, Prostaglandin synthetase inhibition by flavonoids and phenolic compounds in relation to their 02 •— — scavenging properties. Arch. Pharm. 313:330 (1980).CrossRefGoogle Scholar
  77. 77.
    G.W. Burton and K.U. Ingold, Autoxidation of biological molecules. 1. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 103:6472 (1981).CrossRefGoogle Scholar
  78. 78.
    A.K. Ratty and N.P. Das, Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship. Biochem. Med. Metab. Biol. 39:69 (1988).PubMedCrossRefGoogle Scholar
  79. 79.
    I.B. Afanas’ev, A.I. Dorozhko, A.V. Brodskii, V.A. Kostyuk and A.I. Potapovitch, Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmocol. 38:1763 (1989).CrossRefGoogle Scholar
  80. 80.
    B.A. Svingen, J.A. Buege, F.O. O’Neal and S.D. Augst, The mechanism of NADPH-dependent lipid peroxidation. The propagation of lipid peroxidation. J. Biol. Chem. 254:5892 (1979).PubMedGoogle Scholar
  81. 81.
    E. Albano, K.A.K. Lott, T.F. Slater, A. Stier, M.S.R. Symons and P. Tornasi, Spintrapping studies on the free-radical products formed by metabolic activation of carbon tetrachloride in rat liver microsomal fractions of isolated hepatocytes and in vivo in the rat. Biochem. 7. 204:593 (1982).Google Scholar
  82. 82.
    H. Hara, T. Sukamoto, H. Ohtaka, K. Abe, Y. Tatumi, Y. Saito, A. Suzuki and G. Tsukamoto, Effects of baicalein and alpha-tocopherol on lipid peroxidation, free radical scavenging activity and 12-0-tetradecanoylphorbol acetate-induced ear edema. Eur. J. Pharmacol. 221:193 (1992).PubMedCrossRefGoogle Scholar
  83. 83.
    A. Mora, M. Paya, J.L. Rios and M.J. Alcaraz, Structure-activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem. Pharmacol. 40:793 (1990).PubMedCrossRefGoogle Scholar
  84. 84.
    M.J. Alcaraz and M.L. Ferrandiz, Modification of arachidonic metabolism by flavonoids. J. Ethnopharmacol. 21:209 (1987).PubMedCrossRefGoogle Scholar
  85. 85.
    M.J. Laughton, P.J. Evans, M.A. Moroney, J.R.S. Hoult and B. Halliwell, Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem. Pharmacol. 42:1673 (1991).PubMedCrossRefGoogle Scholar
  86. 86.
    J. Robak, F. Shridi, M. Wolbis and M. Krolikowska, Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol. J. Pharmacol. Pharm. 40:451 (1988).PubMedGoogle Scholar
  87. 87.
    T. Sato, A. Kawamoto, A. Tamuro, Y. Tatsumi and T. Fugii, Mechanism of antioxidant action of pueraria glycoside (PG)-1 (an isoflavonoid) and mangiferin (a xanthonoid). Chem. Pharm. Bull. 40:721 (1992).PubMedCrossRefGoogle Scholar
  88. 88.
    M.J. Laughton, B. Halliwell, P.J. Evans and J.R.S. Hoult, Antioxidant and prooxidant actions of the plant phenolics quercetin, gossypol an myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem. Pharmacol. 38:2859 (1989).PubMedCrossRefGoogle Scholar
  89. 89.
    S.R. Husain, J. Cillard and P. Cillard, α-Tocopherol prooxidant effect and malondialdehyde production. J. Am. Oil Chem. Soc. 64:109 (1987).CrossRefGoogle Scholar
  90. 90.
    K. Yamamoto and E. Niki, Interaction of alpha-tocopherol with iron: antioxidant and prooxidant effects of alpha-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron. Biochim. Biophys. Acta 958:19 (1988).PubMedCrossRefGoogle Scholar
  91. 91.
    A.W. Girotti, J.P. Thomas and J.E. Jordan, Prooxidant and antioxidant effects of ascorbate on photosensitized peroxidation of lipids in erythrocyte membranes. Photochem. Photobiol. 41:261 (1985).CrossRefGoogle Scholar
  92. 92.
    E. Rekka and P.N. Kourounakis, Effect of hydroxyethyl rutosides and related comounds on lipid peroxidation and free radical scavenging activity. Some structural aspects.J. Pham. Pharmacol. 43:486 (1991).CrossRefGoogle Scholar
  93. 93.
    A. Valenzuela, R. Guerria and L.A. Videla, Antioxidant properties of the flavonoids silybin and (+)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med. 52:438 (1986).CrossRefGoogle Scholar
  94. 94.
    T.F. Slater, M.N. Eakins, in: “New Trends in the Therapy of Liver Disease,” A. Bertelli, ed., Karger, Basel, p. 84 (1975).Google Scholar
  95. 95.
    L.A. Videla, Assessment of the scavenging action of reduced glutathione, (+)-cyanidanol-3 and ethanol by the chemiluminescent response of the xanthine oxidase reaction. Experientia 34:500 (1983).CrossRefGoogle Scholar
  96. 96.
    L.A. Videla, C. Fraga, O. Koch and A. Boveris, Chemiluminescence of the in situ rat Biochem. Pharmacol. 32:2822 (1983).PubMedCrossRefGoogle Scholar
  97. 97.
    C.G. Fraga, V.S. Martino, G.E. Ferraro, J.D. Coussio and A. Boveris, Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem. Pharmacol. 36:717 (1987).PubMedCrossRefGoogle Scholar
  98. 98.
    A. Boveris, S.F. Llesuy and C.G. Fraga, Increased liver chemiluminescence in tumorbearing mice. Free Radical Biol. Med. 1:131 (1985).CrossRefGoogle Scholar
  99. 99.
    T.F. Slater, Free-radical mechanisms in tissue injury. Biochem. J. 221:1 (1984). 100.Google Scholar
  100. 100.
    P.B. McCay, E.K. Lai, J.L. Poyer, C.M. DuBoise and E.G. Janzen, Oxygen-and carbon-centered free radical formation during carbon tetrachloride metabolism. Observation of lipid radicals in vivo and in vitro. J. Biol. Chem. 259:2135 (1984).PubMedGoogle Scholar
  101. 101.
    B. Chance, H. Sies and A. Boveris, Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527 (1979).PubMedGoogle Scholar
  102. 102.
    H.P. Koch and E. Loffler, Influence of Silymarin and some flavonoids on lipid peroxidation in human platelets. Methods Fund. Exp. Clin. Pharmacol. 7:13 (1985).Google Scholar
  103. 103.
    H. Kappus, D. Koster-Albrecht and H. Remmer, 2-Hydroxyoestradiol and (+)-cyanidanol-3 prevent lipid peroxidation of isolated rat hepatocytes. Arch. Toxicol. 2:321 (1979).CrossRefGoogle Scholar
  104. 104.
    M.R. Cholbi and M.J. Alcaraz, Inhibitory effects of phenolic compounds on CCI4-induced microsomal lipid peroxidation. Experientia 47:195 (1991).PubMedCrossRefGoogle Scholar
  105. 105.
    P-F. Wang and R-L. Zheng, Inhibition of the autoxidation of linoleic acid by flavonoids in micelles. Chem. Phy. Lipids 63:37 (1992).CrossRefGoogle Scholar
  106. 106.
    W. Bors, W. Heller, C. Michel and M. Saran, in: “Methods in Enzymology,” L. Packer and A.M. Glazer, ed., Academic Press, NY, p. 343 (1990).Google Scholar
  107. 107.
    T.J. Mabry, K.R. Markham and M.B. Thomas. “The Systematic Identification of Flavonoids Part 2,” Spring-Verlag, Berlin (1970).CrossRefGoogle Scholar
  108. 108.
    W. Bors and M. Saran, Radical scavenging by flavonoid antioxidants. Free Rad. Res. Commun. 2:289 (1987).CrossRefGoogle Scholar
  109. 109.
    M. Erben-Russ, W. Bors, and M. Saran, Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study. Int. J. Radiat. Biol. 52:393 (1987).CrossRefGoogle Scholar
  110. 110.
    I. Ueno, M. Kohno, K. Haraikawa and I. Hirono, Interaction between quercetin and superoxide radicals. Reduction of the quercetin mutagenicity. J. Pharmacobio-Dyn. 7:798 (1984).PubMedCrossRefGoogle Scholar
  111. 111.
    U. Takahama, 02 •— dependent and-independent photooxidation of quercetin in the presence and absence of riboflavin and effects of ascorbate on the photooxidation. Photochem. Photobiol. 42:89 (1985).PubMedCrossRefGoogle Scholar
  112. 112.
    S.R. Husain, J. Cillard and P. Cillard, Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26:2489 (1987).CrossRefGoogle Scholar
  113. 113.
    U. Takahama, Oxidation products of kaempferol by superoxide anion radical. Plant Cell Physiol. 28:953 (1987).Google Scholar
  114. 114.
    J. Robak and R.J. Gryglewski, Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37:837 (1988).PubMedCrossRefGoogle Scholar
  115. 115.
    A.I. Huguet, S. Manez and M.J. Alcaraz, Superoxide scavenging properties of flavonoids in a non-enzymic system. Z. Naturforsch 45C:19 (1990).Google Scholar
  116. 116.
    G. Sichel, C. Corsaro, M. Scalia, A.J. Bilio and R.P. Bonomo, In vitro scavenger activity of some flavonoids and melanins against 02 •—. Free Rad. Biol. Med. 11:1 (1991).PubMedCrossRefGoogle Scholar
  117. 117.
    N. Cotelle, J.L. Bernier, J.P. Henichart, J.P.C. Catteau, E. Gaydou and J.C. Wallet, Scavenger and antioxidant properties of ten synthetic flavones. Free Rad. Biol. and Med. 13:211 (1992).CrossRefGoogle Scholar
  118. 118.
    W.F. Hodnick, F.S. Kung, W.J. Roettger, C.W. Bohmont and R.S. Pardini, Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids. A structure-activity study. Biochem. Pharmacol. 35:2345 (1986).PubMedCrossRefGoogle Scholar
  119. 119.
    W.F. Hodnick, C.W. Bohmont, C. Capps and R.S. Pardini, Inhibition of the mitochondrial NADH-oxidase (NADH coenzyme Q oxido-reductase) enzyme system by flavonoids: a structure-activity study. Biochem. Pharmacol. 36:2873 (1986).CrossRefGoogle Scholar
  120. 120.
    A.J. Elliott, S.A. Schreiber, C. Thomas and R.S. Pardini, Inhibition of glutathione reductase by flavonoids. A structure-activity study. Biochem. Pharmacol. 44:1603 (1992).PubMedCrossRefGoogle Scholar
  121. 121.
    W.F. Hodnick, B. Kalyanaraman, C.A. Fritsos and R.S. Pardini, in: “Oxygen Radicals in Biology and Medicine,” M.G. Simic, K.A. Taylor, J.F. Ward, C. VonSonntag, ed., Plenum Press, New York, p. 149 (1988).CrossRefGoogle Scholar
  122. 122.
    A.T. Canada, E. Gianella, T.D. Nguyen and R.P. Mason, The production of reactive oxygen species by dietary flavonols. Free Rad. Biol. Med. 9:441 (1990).PubMedCrossRefGoogle Scholar
  123. 123.
    G. Hahn, H.D. Lehmann, M. Kurten, H. Uebel, and G. Vogel, On the pharmacology and toxicology of Silymarin, an antihepatotoxic active priciple from silybum marianum. Arzneim.-Forsh. (Drug Res.) 18:698 (1968).Google Scholar
  124. 124.
    A. Greimel and H. Koch, Silymarin — an inhibitor of horseradish peroxidase. Experientia 33:1417 (1911).CrossRefGoogle Scholar
  125. 125.
    D. Perrissoud, in: “Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-Activity Relationships,” V. Cody, E. Middleton and J.B. Harborne, ed., Alan R. Liss, New York, p. 559 (1986).Google Scholar
  126. 126.
    A. Valenzuela, T. Barria, T. Guerra and A. Garrido, Inhibitory effect of the flavonoid Silymarin on the erythrocyte hemolysis induced by Phenylhydrazine. Biochem. Biophys. Res. Commun. 126:712 (1985).PubMedCrossRefGoogle Scholar
  127. 127.
    A. Valenzuela and R. Guerra, Protective effect of the flavonoid silybin dihemisuccinate on the toxicity of Phenylhydrazine on rat liver. FEBS Lett. 181:271 (1985).CrossRefGoogle Scholar
  128. 128.
    A. Velenzuela, C. Lagos, K. Schmidt and L.A. Videla, Silymarin protection against hepatic lipid peroxidation induced by acute ethanol intoxication in the rat. Biochem. Pharmacol. 39:2209 (1985).CrossRefGoogle Scholar
  129. 129.
    A. Valenzuela, R. Guerra and A. Garrido, Silybin dihemisuccinate protects rat erythrocytes against phenylhydrazine-induced lipid peroxidation and hemolysis. Planta Medica 53:402 (1987).PubMedCrossRefGoogle Scholar
  130. 130.
    H.M. Rauen, H. Schriewer, U. Tegtbauer and J.E. Lasana, Silymarin prevents peroxidation of lipids in carbon tetrachloride-induced liver damage. Experientia 29:1372 (1973).PubMedCrossRefGoogle Scholar
  131. 131.
    P. Letteron, G. Labre, C. Degott, A. Berson, B. Fromenty, M. Delaforge, D. Larrey and D. Pessayre, Mechanism for the protective effects of Silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Evidence that Silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant. Biochem. Pharmacol. 39:2027 (1990).PubMedCrossRefGoogle Scholar
  132. 132.
    G. Labbe, V. Descatoire, P. Letteron, C. Degott, M. Tinel, D. Larrey, Y. Carrion-Pavlor, G. Amouyal and D. Pessayre, The drug methoxsalen, a suicide substrate for cytochrome P-450, decreases the metabolic activation, and prevents the hepatotoxicity of carbon tetrachloride in mice. Biochem. Pharmacol. 36:907 (1987).PubMedCrossRefGoogle Scholar
  133. 133.
    J. Feher, A. Cornides, J. Pal, I. Lang and G. Csomos, Liver cell protection in toxic liver lesion. Acta Physiol. Eungarica, 73:285 (1989).Google Scholar
  134. 134.
    M. Lonchampt, B. Guardiola, N. Sicot, M. Bertrand, L. Perdix and J. Duhault, Protective effect of a purified flavonoid fraction against reactive oxygen radicals. In vivo and in vitro study. Arzneim.-Forsch (Drug Res.) 39:882 (1989).Google Scholar
  135. 135.
    T. Nakayama, M. Yamada, T. Osawa and S. Kawakishi, Suppression of active oxygen-induced cytotoxicity by flavonoids. Biochem. Pharmacol. 45:265 (1993).PubMedCrossRefGoogle Scholar
  136. 136.
    T. Nakayama, T. Niimi, T. Osawa and S. Kawakishi, The protective role of polyphenols in cytotoxicity of hydrogen peroxide. Mutat. Res. 281:77 (1992).PubMedCrossRefGoogle Scholar
  137. 137.
    L.G. Korkina, A.D. Durnev, T.B. Suslova, Z.P. Cheremisina, N.O. Daugel-Dauge and I.B. Afanas’ev, Oxygen radical-mediated mutagenic effect of asbestos on human lymphocytes: suppression by oxygen radical scavengers. Mutat. Res. 265:245 (1992).PubMedCrossRefGoogle Scholar
  138. 138.
    S. Kantengwa and B.S. Polla, Flavonoids, but not protein kinase C inhibitors, prevents stress protein synthesis during erythrophagocytosis. Biochem Biophys. Res. Comm. 180:308 (1991).PubMedCrossRefGoogle Scholar
  139. 139.
    R.J. Ruch, S-J. Cheng and J.E. Klaunig, Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003 (1989).PubMedCrossRefGoogle Scholar
  140. 140.
    J.E. Trosko and C.C. Chang, in: “Mechanisms of Tumor Promotion: Cellular Responses to Tumor Promoters,” T.J. Slaga, ed., CRC Press, Boca Raton, Vol. 4, p. 119 (1984).Google Scholar
  141. 141.
    I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard and J. Cillard, Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmcol. 43:13 (1993).CrossRefGoogle Scholar
  142. 142.
    R.F. Boyer, H.M. Clark and A.P. LaRoche, Reduction and release of ferritin iron by plant phenolics. J. Inorg. Biochem. 32:171 (1988).PubMedCrossRefGoogle Scholar
  143. 143.
    O.I. Aruoma, in “Free Radicals and Food Additives,” O.I. Aruoma and B. Halliwell, ed., Taylor and Francis, London, p. 173 (1991).Google Scholar
  144. 144.
    A. Kapus and G.L. Lukacs, (+)-cyanidanol-3 prevents the functional deterioration of rat liver mitochondria induced by Fe2 + ions. Biochem. Pharmacol. 35:2119 (1986).PubMedCrossRefGoogle Scholar
  145. 145.
    C.V. de Whalley, S.M. Rankin, R.S. Hoult, W. Jessup and D.S. Leake, Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem. Pharmacol. 39:1743 (1990).PubMedCrossRefGoogle Scholar
  146. 146.
    A. Negra-Salvayre, V. Reaud, C. Hariton and R. Salvayre, Protective effect of alpha-tocopherol, ascorbic acid and rutin against peroxidative stress induced by oxidized lipoproteins on lymphoid cell lines. Biochem. Pharmacol. 2:450 (1991).CrossRefGoogle Scholar
  147. 147.
    A. Negra-Salvayre, Y. Alomar, M. Troly and R. Salvayre, Ultraviolet-treated lipoproteins as a model system for the study of the biological effects of lipid peroxides on cultured cells. III. The protective effect of antioxidants (probucol, catechin, vitamin E) against the cytotoxicity of oxidized LDL occurs in two different ways. Biochim. Biophys. Acta 1096:291 (1991).CrossRefGoogle Scholar
  148. 148.
    A. Negre-Salvayre and R. Salvayre, Quercetin prevents the cytoxicity of oxidized LDL on lymphoid cell lines. Free Rad. Biol. Med. 12:101 (1992).PubMedCrossRefGoogle Scholar
  149. 149.
    A. Negra-Salvayre, M. Lopez, T. Levade, M.T. Pierraggi, N. Dousset, L. Douste-Blazy and R. Salvayre, Ultraviolet-treated lipoproteins as a model system for the study of the biological effects of lipid peroxides on cultured cells. II. Uptake and cytotoxicity of ultraviolet-treated LDL on lymphoid cell lines. Biochim. Biophys. Acta 1045:224 (1990).CrossRefGoogle Scholar
  150. 150.
    M.G.L. Hertog, E.J.M. Feskens, P.C.H. Hollman, M.B. Katan and D. Kromhout, Dietary antioxi dant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007 (1993).PubMedCrossRefGoogle Scholar
  151. 151.
    E.N. Frankel, J. Kanner, J.B. German, E. Parks and J.E. Kinsella, Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454 (1993).PubMedCrossRefGoogle Scholar
  152. 152.
    J. Sanhueza, J. Valdes, R. Campos, A. Garrido and A. Valenzuela, Changes in the xanthine dehydrogenase/xanthine oxidase ratio in the rat kidney subjected to ischemia-reperfusion stress: preventive effect of some flavonoids. Res. Commun. Chem. Pathol. Pharmcol. 78:211 (1992).Google Scholar
  153. 153.
    J.M. McCord, Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med 312:159 (1986).Google Scholar
  154. 154.
    M. Iio, Y. Ono, S. Kai and M. Fukumoto, Effects of flavonoids on xanthine oxidation as well as on cytochrome C reduction by milk xanthine oxidase. J. Nutr. Sci. Vitaminol. 32:635 (1986).PubMedCrossRefGoogle Scholar
  155. 155.
    X-H. Ning, X. Ding, K.F. Childs, S.F. Boiling and K.P. Gallagher, Flavone improves functional recovery after ischemia in isolated reperfused rabbit hearts. J. Thorac. Cardiovasc. Surg. 105:541 (1993).PubMedGoogle Scholar
  156. 156.
    R.E. White, M.J. Coon, Oxygen activation by cytochrome P-450. Ann. Rev. Biochem. 49:315 (1980).PubMedCrossRefGoogle Scholar
  157. 157.
    B. Halliwell, J.M.C. Gutteridge. “Free Radicals in Biology and Medicine,” Oxford, New York (1985).Google Scholar
  158. 158.
    L.L. Fan, D.D. O’Keefe, W.J. Powell, Pharmacologic studies on Radix puerariae. effect of puerarin on regional myocardial blood flow and cardiac hemodynamics in dogs with acute myocardial ischemia. J. Chin. Med. (England) 98:821 (1985).Google Scholar
  159. 159.
    T. Sacks, C.F. Moldow, P.R. Craddock, T.K. Bowers, H.S. Jacobs, Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J. Clin. Invest. 61:1161 (1978).PubMedCrossRefGoogle Scholar
  160. 160.
    S.J. Weiss, J. Young, A.F. LoBuglio, A. Slivka and N.G. Nimch, Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 68:714 (1981).PubMedCrossRefGoogle Scholar
  161. 161.
    T. Mazzone, M. Jensen and A. Chait, Human arterial wall cells secrete factors that are chemotactic for monocytes. Proc. Natl. Acad. Sci. USA 80:5094 (1983).PubMedCrossRefGoogle Scholar
  162. 162.
    W-C. Chang and F-L. Hsu, Inhibition of platelet activation and endothelial cell injury by flavan-3-ol and saikosaponin compounds. Prostg. Leukotr. Ess. Fatty Acids 44:51 (1991).CrossRefGoogle Scholar
  163. 163.
    R.J. Gryglewski, R. Korbut, J. Robak and J. Swies, On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmacol. 36:317 (1987).PubMedCrossRefGoogle Scholar
  164. 164.
    K.A. Harper, A.D. Morton and F.J. Rolfe, The phenolic compounds of black currant juice and their protective effect on ascorbic acid. J. Food Technol. 4:255 (1969).CrossRefGoogle Scholar
  165. 165.
    K. Bhagvat, Effect of hesperedin and a factor in Bengal gram (Cicer arietinum) on growth of guinea-pigs. Indian J. Med. Res. 34:87 (1946).PubMedGoogle Scholar
  166. 166.
    H.K. Wilson and C. Price-Jones, The influence of an extract of orange peel on the growth and ascorbic acid metabolism of young guinea-pigs. J. Sci. Food Agr. 22:551 (1971).CrossRefGoogle Scholar
  167. 167.
    J.L. Parrot and J.M. Gazave, Reduction de l’acide dehydroascorbique par le glutathion. Augmentation du rendement final de la reaction par la catechine. C. R. Soc. Biol. 145:821 (1951).Google Scholar
  168. 168.
    C. Regnault-Roger, J.M. Gazave and J. Devynck, Reduction of dehydroascorbic acid by thiols in presence of biocatalytic substances: Polarographic study. Int. J. Vitamin. Nutr. Res. 52:158 (1982).Google Scholar
  169. 169.
    Z. Zloch, Effect of bioflavonoids on the utilization of the vitamin C activity of crystalline L-dehydroascorbic acid. Int. J. Vitamin. Nutr. Res. 43:378 (1973).Google Scholar
  170. 170.
    T.K. Basu and C.J. Schorah. “Vitamin C in Health and Disease,” AVI Publishing, Westport (1982).Google Scholar
  171. 171.
    H.G. Stich, J. Karim, J. Moropatnick and L. Lo, Mutagenic action of ascorbic acid. Nature (London) 260:722 (1976).CrossRefGoogle Scholar
  172. 172.
    M. Burnet. “Intrinsic Mutagenesis: A Genetic Approach to Aging,” MTP, Lancster, (1974).CrossRefGoogle Scholar
  173. 173.
    Y. Sorata, U. Takahama and M. Kimura, Cooperation of quercetin with ascorbate in the protection of photosensitized lysis of human erythrocytes in the presence of hematoporphyrin, Photochem. Photobiol. 48:195 (1988).PubMedCrossRefGoogle Scholar
  174. 174.
    C-Y. Jan, U. Takahama and M. Kimura, Inhibition of photooxidation of a-tocopherol by quercetin in human blood cell membranes in the presence of hematoporphyrin as a photosensitizer. Biochim. Biophys. Acta 1086:7 (1991).PubMedCrossRefGoogle Scholar
  175. 175.
    U. Takahama, Spectrophotometric study on the oxidation of rutin by horseradish peroxidase and characteristics of the oxidized products. Biochim. Biophys. Acta 882:445 (1986).PubMedCrossRefGoogle Scholar
  176. 176.
    R. Vrijsen, L. Everaert and A. Boeye, Antiviral activity of flavones and potentiation by ascorbate. J. Gen. Virol. 69:1749 (1988).PubMedCrossRefGoogle Scholar
  177. 177.
    C. Kandaswmi, E. Perkins, D.S. Soloniuk, G. Drzewiecki and E. Middleton, Jr., Ascorbic acid-enhanced antiproliferative effect of flavonoids on squamous cell carcinoma in vitro. Anti-Cancer Drugs 4:91 (1993).CrossRefGoogle Scholar
  178. 178.
    J.K. Kochi. “Organometallic Mechanisms and Catalysis,” Academic Press, New York (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Chithan Kandaswami
    • 1
  • Elliott MiddletonJr.
    • 1
  1. 1.Department of Medicine School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloUSA

Personalised recommendations