The Potential of Gliclazide, a Sulphonylurea to Influence the Oxidative Processes within the Pathogenesis of Diabetic Vascular Disease

  • Paul E. Jennings
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


The major consequence of diabetes mellitus is that it predisposes to serious vascular disease which affects both the quality and quantity of life. The vascular disease affects both the small vessels (microangiopathy) and the large vessels (macroangiopathy)1. Specific diabetic microangiopathic changes are characterised by increased basement membrane thickening, increased capillary permeability and microthrombus formation. These changes are generalised, found throughout the vascular tree, having major clinical effects in the kidney, retina, peripheral nerve, myocardium and skin. Diabetic patients have a 25 fold increase in the risk of blindness, and diabetes is the major cause of renal failure in the UK and USA2.


Aldose Reductase Platelet Reactivity Arachidonic Acid Cascade Large Vessel Disease Thrombotic Tendency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P.J. Palumbo L.R. Elveback C.P. Chu et al. Diabetes mellitus; incidence, prevalence, survivorship, and causes of death in Rochester, Minnesota, 1945–1970 Diabetes 1970; Diabetes 25:566–573 (1976)PubMedCrossRefGoogle Scholar
  2. (2).
    P.E. Jennings A.H. Barnett. New approaches to the problem of diabetic complications Diabetic Med 5: 111–117.(1988)PubMedCrossRefGoogle Scholar
  3. (3).
    V.W. Monnier. Toward a Maillard theory of ageing. In Baynes J.W.; Monnier V.M. eds. The Malliard Reaction in ageing, diabetes and nutrition. New York; Alan R. Liss inc; 1–22 (1989)Google Scholar
  4. (4).
    M. Brownlee H. Vlassara and A. Cerami. The pathogenetic role of non-enzymatic glycosylation in diabetic complications. In Crabbe M.J.C. Ed. Diabetic complications; Scientific and clinical aspects. Edinburgh; Churchill Livingstone, 94–139 (1987)Google Scholar
  5. (5).
    M. Brownlee S. Ponger and A. Cerami. Covalent attachment of soluble proteins by non enzymatically glycosylated collagen; role of in situ formation of immune complexes. J Ex Med 158; 1739–1744 (1983)CrossRefGoogle Scholar
  6. (6).
    S.P. Wolff Z.Y. Jiang and J.V. Hunt. Protein glycation and oxidative stress in diabetes and ageing. Free Radic Biol Med. 10: 339–352 (1991)PubMedCrossRefGoogle Scholar
  7. (7).
    P.H. Procter and E.S. Reynolds. Free radicals and disease in man. Physiol Chem Phys 16; 175–195 (1984)Google Scholar
  8. (8).
    M.A. Warso and W.E.M. Lands. Lipid Peroxidation in relation to Prostacyclin and thromboxane physiology. Br Med Bull 39: 277–280 (1983)PubMedGoogle Scholar
  9. (9).
    J.J.F. Belch M. Chopra S. Hutchinson et al; Free radical pathology in chronic arterial disease. Free Radical Biol Med 6:375–378, (1989)CrossRefGoogle Scholar
  10. (10).
    S.W. Chari N. Nath and A.B. Rathi. Glutathione and its redox system in diabetic polymorphonuclear leucocytes. Am. J. Med. Sci. 287.14 (1984)PubMedCrossRefGoogle Scholar
  11. (11).
    A.F. Jones P.E. Jennings A. Wakefield J.W. Winkles J. Lunec and A.H. Barnett. The fluoresence of serum proteins in diabetes mellitus. Relationship to microangiopathy Diabetic Medicine 5; 547–551(1988)Google Scholar
  12. (12).
    P.E. Jennings A.F. Jones C.K.M. Florkowski J. Lunec and A.H. Barnett Increased diene conjugates in diabetic subjects with microangiopathy. Diabetic Medicine 5; 111–117 (1988)PubMedCrossRefGoogle Scholar
  13. (13).
    S.P. Wolff. The potential role of oxidative stress in diabetes and its complications; novel implications for theory and therapy. In diabetic Complications; Scientific and clinical aspects. Crabbe M.J.C. (Ed) Churchill Livingstone 167–221 (1987)Google Scholar
  14. (14).
    D.G. Cogan Aldose Reductase and complications of diabetes. Annal Int Med 101; 82–91 (1984)Google Scholar
  15. (15).
    H.P. Misra and I. Fridovich. Superoxide radical and free radicals in clinical chemistry Ann Clin Biochem. 13: 393–398. (1979)Google Scholar
  16. (16).
    M. Chopra N. Scott W.E. Smith and J.J.F. Belch. Captopril a free radical scavengar Br. J. Pharmacol. 27, 396 (1989)CrossRefGoogle Scholar
  17. (17).
    N.A. Scott P.E. Jennings J. Brown and J.J.F. Belch. Gliclazide a Free Radical Scavenger. Eur. J. Pharm 208 175–177 (1991)CrossRefGoogle Scholar
  18. (18).
    D.B. Campbell. P. Adrigenssens Y.W. Hopkins B. Gordon and J.R.B. Williams Pharmacokinetics and metabolism of gliclazide; a review in; Gliclazide and the Treatment of Diabetes (Proceedings Internatinal Symposium, London) eds. Keen et al. p. 71 (1979)Google Scholar
  19. (19).
    T. Tsuboi B. Fuijitani T. Maeda. et al; Effect of gliclazide on prostaglandin and thromboxane synthesis in guinea-pig platelets. Throm Res 21; 103–110 (1981)CrossRefGoogle Scholar
  20. (20).
    O. Ponari E. Givardi S. Megta. et al. Anti-platelets effects of long term treatment with gliclazide on platelet function in patients with diabetes mellitus. Throm Res 16; 191–203. (1979)CrossRefGoogle Scholar
  21. (21).
    C.M. Florkowski M.R. Richardson C. Le Guen P.E. Jennings M.J. O’Donnell. A.F. Jones J. Lunec and A.H. Barnett Effect of gliclazide on thromboxane B2, parameters of haemostasis, fluorescent lgG and lipid peroxides in non-insulin dependent mellitus. Diabetes Research 9; 87–90 (1988)PubMedGoogle Scholar
  22. (22).
    P.E. Jennings N. A. Scott A.R. Saniabadi and J.J.F. Belch. Effects of Gliclazide on Platelet Reactivity and Free Radicals in Type II Diabetic Patients Clinical Assessment. Metabolism 41(5) 36–39 (1992)PubMedCrossRefGoogle Scholar
  23. (23).
    Austs: Lipid peroxidation. In Greenwald R.A. (ed): Handbook of Methods for oxygen Free Radicals. Research, Boca Raton, FL, LRL, pp 203–207 (1987)Google Scholar
  24. (24).
    Y. Akanuma K. Kosaka Y. Kanazawa K. Kasugam M. Fukuda and A. Aoki. Long. Term Comparison on Oral Hypoglycaemic Agents in Diabetic Retinopathy. Diabetes Research and Clinical Practice. 5; 81–90 (1988)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Paul E. Jennings
    • 1
  1. 1.York Diabetes CentreThe York District HospitalYorkUK

Personalised recommendations