Reactive Oxygen Molecules in the Kidney

  • Wayne R. Waz
  • Leonard G. Feld
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


Reactive oxygen species (ROS) are produced as a normal consequence of aerobic respiration, as a response to immunologic stimulation, and as a by-product of many oxidationreduction reactions in living organisms. The kidney is a site of significant aerobic metabolism. In its role of maintaining fluid and electrolyte homeostasis, the kidney accounts for 10% of whole body oxygen consumption while making up less than 1% of total body mass1. Circulating immune elements (including neutrophils, monocytes, immune complexes) and activated intrinsic glomerular cells (macrophages, mesangial cells) are involved in a majority of glomerulonephritides2. ROS can mediate some of the glomerular damage. The arachidonic acid cascade, responsible for both vasodilator and vasoconstrictor substances essential to normal renal function, is both initiated by and a source of ROS3. However, the production of ROS is, under most circumstances, balanced by intrinsic antioxidant defenses4. Understanding the relationship between ROS production and antioxidant defenses will clarify the role of ROS in renal disease.


Acute Renal Failure Xanthine Oxidase Renal Injury Hemolytic Uremic Syndrome Glomerular Basement Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.R. Gullans and S.C. Hebert, Metabolic basis of ion transport, in:“The Kidney,” B.M. Brenner and F.C. Rector eds., W. B. Saunders Company, Philadelphia (1991).Google Scholar
  2. 2.
    C.B. Wilson, The renal response to immunologic injury, in:“The Kidney,” B.M. Brenner and F.C. Rector eds., W. B. Saunders Company, Philadelphia (1991).Google Scholar
  3. 3.
    H.J. Schiller, K.A. Andreoni, and G.B. Bulkley, Free radical ablation for the prevention of post-ischemic renal failure following renal transplantation, Klinische Wochenschrift. 69:1083–1094 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Ichikawa, S. Kiyama, and T. Yoshioka, Renal atioxidant enzymes: their regulation and function, Kidney Int. 45: 1–9 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    S.P. Andreoli, Reactive oxygen molecules, oxidant injury, and renal disease, Pediatr. Nephrol. 5:733–742 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Baud, J. Hagege, J. Sraer, E. Rondeau, J. Perez, and R. Ardaillou, Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity, J. Exp. Med. 158:1836–1852 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Baud and R. Ardaillou, Reactive oxygen spcies: production and role in the kidney, Am. J. Physiol. 251:F765–F776 (1986).PubMedGoogle Scholar
  8. 8.
    S.V. Shah, Oxidant mechanisms in glomerulonephritis, Semin. Nephrol. 11:320–326 (1991).PubMedGoogle Scholar
  9. 9.
    J.K. Horton, M. Davies, N. Topley, D. Thomas, and J.D. Williams, Activation of inflammatory response of neutrophils by Tamm-Horsfall glycoprotein, Kidney Inf. 37:717–726 (1990).CrossRefGoogle Scholar
  10. 10.
    S.V. Shah, Light emission by isolated rat glomeruli in response to phorbol myristate acetate, J. Lab. Clin. Med. 98:46–51 (1981).PubMedGoogle Scholar
  11. 11.
    H.H. Radeke, B. Meier, N. Topley, J. Flöge, G.G. Habermehl, and K. Resch, Interleukin 1-α and tumor necrosis factor-α induce oxygen radical production in mesangial cells, Kidney Int. 37:767–775 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Stratta, C. Canavese, M. Dogliani, G. Mazzucco, G. Monga, and A. Vercellone, Role of free radicals in the progression of renal disease, Am. J. Kidney Dis.XVII (Suppl 1):33–37 (1991).Google Scholar
  13. 13.
    S. Adler, P.J. Baker, and R.J. Johnson, Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat masangial cells, J. Clin. Invest. 77:762–767 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    B.H. Rovin, E. Wurst, and D.E. Kohan, Production of reactive oxygen species by tubular epithelial cells in culture, Kidney Int. 37:1509–1514 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    M.S. Paller and T.V. Neumann, Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation, Kidney Int. 40: 1401–1049 (1992).Google Scholar
  16. 16.
    E.L. Greene and M.S. Paller, Xanthine oxidase produces O2-in posthypoxic injury of renal epithelial cells, Am. J. Physiol. 263:F251–F255 (1992).PubMedGoogle Scholar
  17. 17.
    L. Frank, P.L. Lewis, and I.R.S. Sosenco, Dexamethasone stimulation of fetal rat lung antioxidant enzyme activity in parallel with surfactant stimulation, Pediatrics. 75:569–574 (1985).PubMedGoogle Scholar
  18. 18.
    P. Randhawa, M. Hass, L. Frank, and D. Massaro, Dexamethasone increases superoxide dismutase activity in serum-free rat fetal organ cultures, Pediatr. Res. 20:895–898 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Randhawa, M. Hass, L. Frank, and D. Massaro, P02-dexamethasone interactions in fibroblast growth and antioxidant enzyme activity, Am. J. Physiol. 252:C396–C400 (1987).PubMedGoogle Scholar
  20. 20.
    Y. Shiki, B.O. Meyrick, K.L. Brigham, and I.M. Burr, Endotoxin increases superoxide dismutase in cultured bovine pulmonary endothelial cells, Am. J. Physiol. 252:C436–C440 (1987).PubMedGoogle Scholar
  21. 21.
    A. Masuda, D.L. Longo, Y. Kobayashi, E. Appella, J.J. Oppenheim, and K. Matsushima, Induction of mitochondrial manganese superoxide dismutase by interleukin 1, FASEB J. 2:3087–3091 (1988).PubMedGoogle Scholar
  22. 22.
    G.A. Visner, W.C. Dougall, J.M. Wilson, I.M. Burr, and H.S. Nick, Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin 1, and tumor necrosis factor, J. Biol. Chem. 265:2856–2864 (1990).PubMedGoogle Scholar
  23. 23.
    K.A. Nath and M.S. Paller, Dietary deficiency of antioxidants exacerbates ischemic injury in the rat, Kidney Int. 38: 1109–1117 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Hara, H. Miyai, T. Iida, A. Futenma, S. Nakamura, and K. Kato, Aggravation of puromycin aminonucleoside nephrosis by the inhibition of endogenous superoxide dismutase, Proc. Xlth Int. Congr. NephrolAAl (1990).Google Scholar
  25. 25.
    R. Baliga, M. Baliga, and S.V. Shah, Effect of selenium deficient diet in experimental glomerular disease, Am. J. P. Physiol. 263:F56–F61 (1992).Google Scholar
  26. 26.
    H. Miyai, T. Hara, K. Yajada, S. Nakamura, A. Futenma, and K. Kato, Aggravation of puromycinaminonucleoside nephrosis by glutathione depleting agent, Proc. Xlth Int. Congr. Nephrol. 442 (1990).Google Scholar
  27. 27.
    T. Kawamura, T. Yoshioka, T. Bills, A. Fogo, and I. Ichikawa, Glucocorticoid activates glomerular antioxidant enzymes and protects glomeruli from oxidant injuries, Kidney Int. 40:291–301 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Yoshioka, T. Bills, T. Moore-Jarrett, H.L. Greene, I.M. Burr, and I. Ichikawa, Role of intrinsic antioxidant enzymes in renal oxidant injury, Kidney Int. 38:282–288 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    M.L. Barnard, S. Snyder, T.D. Engerson, and J.F. Turrens, Antioxidant enzyme status of ischemic and postischemic liver and ischemic kidney in rats, Free Radical Biol. Med. 15:221–232 (1993).CrossRefGoogle Scholar
  30. 30.
    K.A. Nath, J. Zou, and M.E. Rosenberg, Prior exposure to hydrogen peroxide confers resistance to oxidative injury in LLC-PK1 cells and is associated with induction of heme oxygenase mRNA, J. Am. Soc. Nephrol. 3:711 (1992).Google Scholar
  31. 31.
    N. Honda, A. Hishida, K. Ikuma, and K. Yonemura, Acquired resistance to acute renal failure, Kidney Int. 31:1233–1238 (1988).CrossRefGoogle Scholar
  32. 32.
    K. Asayama, H. Hayashibe, K. Dobashi, N. Uchida, M. Kobayashi, A. Kawaoi, and K. Kato, Immunohistochemical study on perinatal development of rat superoxide dismutases in lungs and kidneys, Pediatr. Res. 29:487–491 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    T.D. Oberly, L.W. Oberly, A.F. Slattery, L.J. Lauchner, and J.H. Elwell, Immunohistochemical localization of antioxidant enzymes in adult Syrian hamster tissues and during kidney development, Am. J. Pathol. 137:199–214 (1990).Google Scholar
  34. 34.
    M.G. Davies, G.A. Coles, and M.H. Harber, Effect of glomerular basement membrane on the initiation of chemiluminescence and lysosomal enzyme release in human polymorphonuclear leukocytes: an in vitro model of glomerular disease, Immunology. 52:151–159.Google Scholar
  35. 35.
    H. Mossmann, B. Hoyer, W. Walz, K. Himmelspach, and D.K. Hammer, Antibody-dependent cellular cytotoxicity and chemiluminescence as a tool for studying the mechanism of anti-glomerular asement membrane nephritis. The role of the cytotoxic potential of polymorphonuclear granuylocytes and monocytes, Immunlolgy. 53:545–552 (1984).Google Scholar
  36. 36.
    M.C.M. Vissers, R. Wiggins, and J.C. Fantone, Comparative ability of human monocytes and neutrophils to degrade glomerular basement membrane, Lab. Invest. 60:831–383 (1989).PubMedGoogle Scholar
  37. 37.
    S. Shah, Role of reactive oxygen metabolites in experimental glomerular disease, Kidney Int. 35:1093–1106 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    S. J. Weiss and S. Regiani, Neutrophils degrade subendothelial matrices in the presence of alpha1-proteinase inhibitor, J. Clin. Invest. 73:1297–1303 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    S.P. Andreoli, J.A. McAteer, S.A. Seifert, and S.A. Kempson, Oxidant-induced alterations in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury, Am. J. Phrysiol. 265:F377–F384 (1993).Google Scholar
  40. 40.
    S.P. Andreoli and J.A. McAteer, Reactive oxygen molecule-mediated injury in endothelial and renal tubular epithelial cells in vitro, Kidney Int. 38:785–794 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    A.K. Salahudeen, E.C. Clark, and K.A. Nath, Hydrogen peroxide-induced renal injury: a protective role for pyruvate in vitro and in vivo, J. Clin. Invest. 88:1886–1893 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Asakura, H. Ikeda, and G. Munekazu, In vitro oxygenation injury to slices prepared from ischemic kidney in rats, Japanese Journal of Pharmacology. 60:149–151 (1992).PubMedCrossRefGoogle Scholar
  43. 43.
    S.C. Borkan and J.H. Schwartz, Role of oxygen free radical species in in vitro models of proximal tubular ischemia, Am. J. Physiol. 257:F114–F125 (1989).PubMedGoogle Scholar
  44. 44.
    R.B. Doctor and L.J. Mandel, Miminmal role of xanthine oxidase and oxygen free radicals in rat renal tubular reoxygenation injury, J. Am. Soc. Nephrol. 1:959–969 (1991).PubMedGoogle Scholar
  45. 45.
    R. Zager, D.J. Gmur, B.A. Schimpf, C.R. Bredl, and C.A. Foerder, Evidence against increased hydroxyl radical production during oxygen deprivation-reoxygenation proximal tubular injury, J. Am. Soc. Nephrol. 2:1627–1633 (1992).PubMedGoogle Scholar
  46. 46.
    R. Zager, B.A. Schimpf, C.R. Redl, and C.A. Foerder, Increased proximal tubular cell catalytic iron content: a result, not a mediator of, hypoxia-reoxygenation injury, J. Am. Soc. Nephrol. 3:116–118 (1992).PubMedGoogle Scholar
  47. 47.
    J.M. Weinberg and H.D. Humes, Increases of cell ATP produced by adenine nucleotides in isolated rabbit kidney tubules, Am. J. Physiol. 250:F720–F733 (1986).PubMedGoogle Scholar
  48. 48.
    K.J. Johnson and J.M. Weinberg, Postischemic renal injury due to oxygen radicals, Current Opinion in Nephrology and Hypertension. 2:625–635 (1993).PubMedCrossRefGoogle Scholar
  49. 49.
    L. Baud, M.P. Nivez, D. Chansel, and R. Ardaillou, Stimulation by oxygen radicals of prostaglandin production by rat renal glomeruli, Kidney Int. 20:332–339 (1981).PubMedCrossRefGoogle Scholar
  50. 50.
    L. Baud, B. Fouqueray, C. Philippe, and R. Ardaillou, Reactive oxygen species as glomerular autacoids, J. Am. Soc. Nephrol. 2:S132–S138 (1992).PubMedGoogle Scholar
  51. 51.
    G.M. Rubanyi, Vascular effects of oxygen-derived free radicals, Free Radical Biol. Med. 4:107–120 (1988).CrossRefGoogle Scholar
  52. 52.
    R.J. Gryglewski, R. Palmer, M.J., and S. Moncada, Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor, Nature. 320:454–456 (1986).PubMedCrossRefGoogle Scholar
  53. 53.
    J.R. Diamond, The role of reactive oxygen species in animal models of glomerular disease, Am. J. Kidney Dis. XIX:292–300 (1992).Google Scholar
  54. 54.
    A. Rehan, K.J. Johnson, R.C. Wiggins, R.G. Kunkel, and P.A. Ward, Evidence for the role of oxygen radicals in acute nephrotoxic nephritis, Laboratory Investigation. 51:396–403 (1984).PubMedGoogle Scholar
  55. 55.
    N.W. Boyce and S.R. Holdsworth, Hydroxyl radical mediation of immune renal injury by desferrioxamine, Kidney Int. 30:813–817 (1986).PubMedCrossRefGoogle Scholar
  56. 56.
    T. Adachi, M. Fukuta, Y. Ito, K. Hirano, M. Sugiura, and K. Sugiura, Effect of superoxide dismutase on glomerular nephritis, Biochem. Pharmacol. 35:341–345 (1986).PubMedCrossRefGoogle Scholar
  57. 57.
    R.J. Johnson, S.J. Klebanoff, R.F. Ochi, S. Adler, P. Baker, L. Sparks, and W.G. Couser, Participation of the myeloperoxidase-H2O2-halide system in immune complex nephritis, Kidney Int. 32:342–349 (1987).PubMedCrossRefGoogle Scholar
  58. 58.
    T. Yoshioka and I. Ichikawa, Glomerular dysfunction induced by polymorphonuclear leukocyte-derived reactive oxygen species, Am. J. Physiol. 257:F53–F59 (1989).PubMedGoogle Scholar
  59. 59.
    A. Rehan, K.J. Johnson, R.G. Kunkel, and R.C. Wiggins, Role of oxygen radicals in phorbol myristate acetate-induced glomerular injury, Kidney Int. 27:503–511 (1985).PubMedCrossRefGoogle Scholar
  60. 60.
    A. Rehan, R.C. Wiggins, R.G. Kunkel, G.O. Till, and K.J. Johnson, Glomerular injury and proteinuria in rats after intrarenal injuction of cobra venom factor: evidence for the role of neutrophil-derived oxygen free radicals, Am. J. Pathol. 123:51–66 (1986).Google Scholar
  61. 61.
    T. Yoshioka, I. Ichikawa, and A. Fogo, Reactive oxygen metabolites cause massive, reversible proteinuria and glomerular sieving defect without apparent ultrastructural abnormality, J. Am. Soc. Nephrol. 2:902–912 (1991).PubMedGoogle Scholar
  62. 62.
    K.J. Johnson, A. Rehan, and P.A. Ward, The role of oxygen radicals in kidney disease, Upjohn Symposium/Oxygen Radicals. 115–121 (1987).Google Scholar
  63. 63.
    S. Shah, Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats, Am. J. Physiol. 254:F337–F344 (1988).PubMedGoogle Scholar
  64. 64.
    D. Lotan, B.S. Kaplan, J.S.C. Fong, P.R. Goodyer, and J.P. de Chadarevian, Reduction of protein excretion by dimethyl sulfoxide in rats with passive Heymann nephritis, Kidney Int. 25:778–788 (1984).PubMedCrossRefGoogle Scholar
  65. 65.
    M.A. Rahman, S.S. Emancipator, and J.R. Sedor, Hydroxyl radical scavengers ameliorate proteinuria in rat immune complex glomerulonephritis, J. Lab. Clin. Med. 112:619–626 (1988).PubMedGoogle Scholar
  66. 66.
    J.M. McCord, Oxygen-derived free radicals in postischemic tissue injury, N. Engl. J. Med. 312:159–163 (1985).PubMedCrossRefGoogle Scholar
  67. 67.
    M.S. Paller, J.R. Hoidal, and T.F. Ferris, Oxygen free radicals in ischemic acute renal failure in the rat, J. Clin. Invest. 74:1156–1164 (1984).PubMedCrossRefGoogle Scholar
  68. 68.
    M.S. Paller and B.E. Hedlund, Role of iron in postischemic renal injury in the rat, Kidney.Int. 34:474–480 (1988).PubMedCrossRefGoogle Scholar
  69. 69.
    P.H. Lee, Y.C. Chung, M.T. Huang, R.H. Hu, and C.S. Lee, Protective effect of superoxide dismutase and allopurinol on oxygen free radical-induced damage to the kidney, Transplantation Proceedings. 24:1353–1354 (1992).PubMedGoogle Scholar
  70. 70.
    R.N. McCoy, K.E. Hill, M.A. Ayon, J.H. Stein, and R.F. Burk, Oxidant stress following renal ischemia: changes in the glutathione redox ratio, Kidney Int. 33:812–817 (1988).PubMedCrossRefGoogle Scholar
  71. 71.
    T.G. McKelvey, M.E. Hollwarth, D.N. Granger, T.D. Engerson, U. Landler, and H.P. Jones, Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney, Am. J. Physiol. 254:G753–G760 (1988).PubMedGoogle Scholar
  72. 72.
    S.L. Linas, D. Whittenburg, and J.E. Repine, Role of xanthine oxidase in ischemia/reperfusion injury, Am. J. Physiol. 258:F711–F716 (1990).PubMedGoogle Scholar
  73. 73.
    L. Yu, A.C. Seguro, and A.S. Rocha, Acute renal failure following hemorrhagic shock: protective and aggravating factors, Renal Failure. 14:49–55 (1992).PubMedCrossRefGoogle Scholar
  74. 74.
    G. Haraldsson, U. Nilsson, S. Bratell, S. Pettersson, T. Schersten, S. Akerlund, and O. Jonsson, ESR-measurement of production of oxygen radicals in vivo before and after renal ischemia in the rabbit, Acta. Physiol. Scand. 146:99–105 (1992).PubMedCrossRefGoogle Scholar
  75. 75.
    K. Takahashi, T.M. Nammour, M. Fukunaga, J. Ebert, J.D. Morrow, L.J. Roberts, R.L. Hoover, and K.F. Badr, Glomerular actions of a free radical-generated novel prostaglandin, 8_epi-prostaglandin F, in the rat: evidence for interaction with thromboxane A2 receptors, J. Clin. Invest. 90:136–141 (1992).PubMedCrossRefGoogle Scholar
  76. 76.
    G. Schulman, A. Fogo, A. Gung, K. Badr, and R. Hakim, Complement activation retards resolution of acute ischemic renal failure in the rat, Kidney Int. 40:1069–1074 (1991).PubMedCrossRefGoogle Scholar
  77. 77.
    W.F. Finn, Prevention of ischemic injury in renal transplantation, Kidney Int. 37:171–182 (1990).PubMedCrossRefGoogle Scholar
  78. 78.
    A. Demirbas, S. Bozoklu, A. Ozdemir, N. Bilgin, and M. Haberal, Effect of α-tocopherol on the prevention of reperfusion injury caused by free oxygen radicals in the canine kidney autotransplantation model, Transplantation Proceedings. 25:2214 (1993).Google Scholar
  79. 79.
    I. Koyama, G.B. Bulkley, G.M. Williams, and M.J. Im, The role of oxygen free radicals in mediating the reperfusion of cold-preserved ischemic kidneys, Transplantation. 40:590–595 (1985).PubMedCrossRefGoogle Scholar
  80. 80.
    W.I. Bry, G.M. Collins, N.A. Halasz, and M. Jellinek, Improved function of perfused rabbit kidneys by prevention of oxidative injury, Transplantation. 38:579–582 (1984).PubMedCrossRefGoogle Scholar
  81. 81.
    L.M. GAmelin and R.A. Zager, Evidence against oxidative injury as a critical mediator of postischemic acute renal failure, Am. J. Physiol. 255:F450–F460 (1988).Google Scholar
  82. 82.
    M. Joannidis, G. Gstraunthaler, and W. Pfaller, Xanthine oxidase: evidence against a causative role in renal reperfusion injury, Am. J. Physiol. 258:F232–F236 (1990).PubMedGoogle Scholar
  83. 83.
    M.A. Thornton, R. Winn, C.E. Alpers, and R.A. Zager, An evaluation of the neutrophil as a mediator of in vivo renal ischmeic-reperfusion injury, Am. J. Pathol. 135:509–515 (1989).PubMedGoogle Scholar
  84. 84.
    M.S. Paller, Effect of neutrophil depletion on ischemic renal injury in the rat, J. Lab. Clin. Med. 113:379–386 (1989).PubMedGoogle Scholar
  85. 85.
    S.L. Linas, D. Whittenburg, and J.E. Repine, O2 metabolites cause reperfusion injury after short but not prolonged renal ischemia, Am. J. Physiol. 253:F685–F691 (1987).PubMedGoogle Scholar
  86. 86.
    J.Z. Li, H.Y. Wang, J. Tang, W.Z. Zou, D.H. Lu, and D.W. Chen, The effect of calcitonin gene-related peptide on accute ischemia-reperfusion injury: ultrastructural and lipid peroxidation studies, Renal Failure. 14:11–16 (1992).PubMedCrossRefGoogle Scholar
  87. 87.
    K.A. Nath, A.J. Croatt, and T.H. Hostetter, Oxygen consumption and oxidant stress in surviving nephrons, Am. J. Physiol. 258:F1354–F1362 (1990).PubMedGoogle Scholar
  88. 88.
    K.A. Nath and A.K. Salahudeen, Induction of renal growth and injury in the intact rat kidney by dietary deficiency of antioxidants, J. Clin. Invest. 86:1179–1192 (1990).PubMedCrossRefGoogle Scholar
  89. 89.
    A.R. Morrison and D. Portilla, Lipid peroxidation and the kidney, in:“Cellular Antioxidant Defense Mechanisms,” C.K. Chow ed., CRC press, Boca Raton (1988)Google Scholar
  90. 90.
    P.D. Walker and S.V. Shah, Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats, J. Clin. Invest. 81:334–341 (1988).PubMedCrossRefGoogle Scholar
  91. 91.
    P.D. Walker, C. Das, and S.V. Shah, Cyclosporin A induced lipid peroxidation in renal cortical mitochondria, Kidney Int. 29:311 (1986).CrossRefGoogle Scholar
  92. 92.
    C.E. Myers, W.P. McGurie, R.H. Liss, I. Iprim, K. Grotzinger, and R.C. Young, Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response, Science. 197:165–167 (1977).PubMedCrossRefGoogle Scholar
  93. 93.
    M. Odeh, The role of reperfusion-induced injury in the pathogenesis of the crush syndrome, N. Engl. J. Med. 324:1417–1422 (1991).PubMedCrossRefGoogle Scholar
  94. 94.
    N. Honda, A. Hishida, and A. Kato, Factors affecting severity of renal injury and recovery of function in acute renal failure, Renal Failure. 14:337–340 (1992).PubMedCrossRefGoogle Scholar
  95. 95.
    H. Rabl, G. Khoschsorur, T. Colombo, F. Tatzber, and H. Esterbauer, Human plasma lipid peroxide levels show a strong transient increase after successful revascularisation operations, Free Radical Biol. Med. 13:281–288 (1992).CrossRefGoogle Scholar
  96. 96.
    H.C. Chen, Y. Tornino, Y. Yaguchi, M. Fukui, K. Yokoyama, A. Watanabe, and H. Koide, Oxidative metabolism of polymorphonuclear leukocytes (PMN) in patients with IgA nephropathy, Journal of Clinical Laboratory Analysis. 6:35–39 (1992).PubMedCrossRefGoogle Scholar
  97. 97.
    T. Naito, H. Kida, and M. Takaeda, Role of reactive oxygen species system in the progression of diabetic nephropathy, Abstract Book, XIth International Congress of Nephrology. July 15–20:94A (1990).Google Scholar
  98. 98.
    S. O’Regan, R.W. Chesney, B.S. Kaplan, and K.N. Drummond, Red cell membrane phospholipid abnormalities in the hemolytic uremic syndrome, Clin. Nephrol. 15:14–17 (1980).Google Scholar
  99. 99.
    K.D. Forsyth, A.C. Simpson, M.M. Fitzpatrick, T.M. Barratt, and R.J. Levinsky, Neutrophil-mediated endothelial injury in haemolytic uraemic syndrome, Lancet. II:411–414 (1989).CrossRefGoogle Scholar
  100. 100.
    S. Turi, I. Nemeth, I. Vargha, and B. Matkovics, Oxidative damage of red blood cells in haemolytic uraemic syndrome, Pediatr. Nephrol. 8:26–29 (1994).PubMedCrossRefGoogle Scholar
  101. 101.
    L.H. Toledo-Pereyra, R.L. Simmons, L.C. Olson, and J.S. Najarian, Clinical effect of allopurinol on preserved kidneys, Annals of Surgery. 185:128–131 (1977).PubMedCrossRefGoogle Scholar
  102. 102.
    V.C. Marshall, M. Biguzas, P. Jabionski, D.F. Scott, B.O. Howden, A.C. Thomas, C.W. Cham, and K. Walls, UW solution for kidney preservation, Transplant. Proc. 22:466–468 (1990).Google Scholar
  103. 103.
    R.J. Ploeg, Kidney preservation with the UW and Euro Collins solutions, Transplantation. 49:281–284 (1990).PubMedCrossRefGoogle Scholar
  104. 104.
    M. Moukarzel, G. Benoit, H. Bensadoun, and et. al., Non-randomized comparative study between University of Wisconsin Cold Storage and Euro-Collins solution in kidney transplantation, Transplant. Proc. 22:2289–2290 (1990).PubMedGoogle Scholar
  105. 105.
    J.H. Southard, T.M. Van Gulik, M.S. Ametani, and et. al., Important components of the UW solution, Transplantation. 49:25l-257 (1990).CrossRefGoogle Scholar
  106. 106.
    H. Schneeberger, W.D. Illner, D. Abendroth, G. Bulkley, F. Rutilli, M. Williams, M. Thiel, and W. Land, First clinical experience with superoxide dismutase in kidney transplantation-results of a double blind randomized study, Transplant. Proc.. 21:1245–1246 (1989).PubMedGoogle Scholar
  107. 107.
    H. Schneeberger, S. Schleibner, M. Schilling, W.D. Illner, D. Abendroth, E. Hancke, U. Jnicke, and Land, Prevention of acuite renal failure after kidney transplantation with rh_SOD; interim analysis of a double-blind placebo-controlled trial, Transplant. Proc. 22:2224–2225 (1990).PubMedGoogle Scholar
  108. 108.
    R.A. Greenwald, Superoxide dismutase and catalase as therapeutic agents for human diseases. A critical review, Free Radical Biol. Med. 8:201–209 (1990).CrossRefGoogle Scholar
  109. 109.
    H. Rabl, G. Khoschsorur, T. Colombo, P. Petritsch, M. Rauchenwald, P. Koltringer, F. Tatzber, and H. Esterbauer, A multivitamin infusion prevents lipid peroxidation and improves transplantation performance, Kidney Int. 43:912–911 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Wayne R. Waz
    • 1
  • Leonard G. Feld
    • 1
  1. 1.Division of Pediatric Nephrology Children’s Kidney CenterChildren’s Hospital of BuffaloBuffaloUSA

Personalised recommendations