Free Radicals in the Pathophysiology of Pulmonary Injury and Disease

  • Daniel J. Brackett
  • Paul B. McCay
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 366)


There is a substantial volume of literature indicating that free radicals are significantly involved in lung injury and disease in a wide variety of clinically relevant situations. Evidence to support this relationship is derived from both experimental animal studies and clinical studies of human patients. Data is convincing that pulmonary injury can be induced by a myriad of stimuli that have the capacity to activate the inflammatory system These stimuli initiate a cascade of events that appear to involve the inflammatory mediators complement, tumor necrosis factor, thromboxane, xanthine oxidase, neutrophils, and the subject of this chapter, free radicals. The conclusions of reports which have utilized manipulation of these mediators in experimental studies and measurements of indices of excessive free radical generation in patients suffering from pulmonary disorders strongly suggest that free radicals may be essential and perhaps final mediators of lung injury in many of these experimental and clinical situations. These data support further evidence that measurements detecting the presence of excessive free radical generation or cellular injury known to be associated with free radical reactions may be useful tools in revealing the potential for the development of pulmonary damage and as predictors of the intensity of the injury. Clinical measurements of this type may result in the identification of patients who are at high risk for pulmonary injury or disease and who are candidates for antioxidant therapy. This chapter will review a selection of reports from the literature documenting the significant role of free radicals in lung injury, their presence in pulmonary disease, and the potential for clinically relevant measurements of free radical generation and activity to aid in the detection, prediction, and therapy of damage to the pulmonary system.


Cystic Fibrosis Lung Injury Acute Lung Injury Idiopathic Pulmonary Fibrosis Xanthine Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Stallone, R.C. Lim, Jr., and F.W. Blaisdell, Pathogenesis of the pulmonary changes following ischemia of the lower extremities, Ann. Thor. Surg. 7:539 (1969).CrossRefGoogle Scholar
  2. 2.
    H. Haimovici, Metabolic complications of acute arterial occlusions, J. Cardiovas. Surg. 20:349 (1979).Google Scholar
  3. 3.
    G.M. Matuschak, J.E. Rinaldo, M.R. Pinsky, J.S. Gavaler, and D.H. Van Thiel, Effect of end-stage liver failure on the incidence and resolution of the adult respiratory distress syndrome, J. Crit. Care 2:162 (1987).CrossRefGoogle Scholar
  4. 4.
    I.S. Paterson, J.M. Klausner, G. Goldman, R Pugatch, H. Feingold, P. Allen, J. A. Mannick, C.R. Valeri, D. Shepro, and H.B. Hechtman, Pulmonary edema after aneurysm surgery is modified by mannitol, Ann. Surg. 210:796 (1989).PubMedGoogle Scholar
  5. 5.
    B.M. Babior, J.T. Curnutte, and N. Okamura, The respiratory burst oxidase of the human neutrophil, in: “Oxygen Radicals and Tissue Injury,” B. Halliwell, ed., Federation of American Societies for Experimental Biology, Bethesda (1988).Google Scholar
  6. 6.
    D.J. Schmeling, M.G. Caty, K.T. Oldham, K.S. Guice, and D.B. Hinshaw, Evidence for neutrophil-related acute lung injury after intestinal ischemia-reperfusion, Surgery 106:195 (1989).PubMedGoogle Scholar
  7. 7.
    R.S. Poggetti, F.A. Moore, E.E. Moore, D.D. Bensard, B.O. Anderson, and A. Banerjee, Liver injury is a reversible neutrophil-mediated event following gut ischemia, Arch. Surg. 127:175 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Koike, E.E. Moore, F.A. Moore, V.S. Carl, J.M. Pitman, and A. Banerjee, Phospholipase A2 inhibition decouples lung injury from gut ischemia-reperfusion, Surgery 112:173 (1992).PubMedGoogle Scholar
  9. 9.
    R.S. Poggetti, F.A. Moore, E.E. Moore, K. Koeike, and A. Banerjee, Simultaneous liver and lung injury following gut ischemia is mediated by xanthine oxidase, J. Trauma 32:723 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Koike, F.A. Moore, E.E. Moore, R.A. Read, V.S. Carl, and A. Banerjee, Gut ischemia mediates lung injury by a xanthine oxidase-dependent neutrophil mechanism, J. Surg. Res. 54:469 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    M.G. Caty, K.S. Guice, K.T. Oldham, D.G. Remick, and S. Kunkel, Evidence for tumor necrosis factorinduced pulmonary microvascular injury after intestinal ischemia-reperfusion injury, Ann. Surgery 212:694 (1990).CrossRefGoogle Scholar
  12. 12.
    J. Hill, T. Lindsay, C.R. Valeri, D. Shepro, and H.B. Hechtman, A CD18 antibody prevents lung injury but not hypotension after intestinal ischemia-reperfusion, J. Appl. Physiol. 74:659 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Hill, T. Lindsay, J. Rusche, C.R. Valeri, D. Shepro, and H.B. Hechtman, A Mac-1 antibody reduces liver and lung injury but not neutrophil sequestration after intestinal ischemia-reperfusion, Surgery 112:166 (1992).PubMedGoogle Scholar
  14. 14.
    D.L. Carden, J. A. Young, and D.N. Granger, Pulmonary microvascular injury after intestinal ischemiareperfusion: role of P-selectin, J. Appl. Physiol. 75:2529 (1993).PubMedGoogle Scholar
  15. 15.
    J.M. Klausner, H. Anner, I.S. Paterson, L. Kobzik, C.R. Valeri, D. Shepro, and H.B. Hechtman, Lower torso ischemia-induced lung injury is leukocyte dependent, Ann. Surg. 208:761 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    J.M. Klausner, I.S. Paterson, L. Kobzik, C.R. Valeri, D. Shepro, and H.B. Hechtman, Oxygen free radicals mediate ischemia-induced lung injury, Surgery 105:192 (1989).PubMedGoogle Scholar
  17. 17.
    J. Punch, R. Rees, B. Cashmer, K. Oldham, E. Wilkins, and D.J. Smith, Jr., Acute lung injury following reperfusion after ischemia in the hind limbs of rats, J. Trauma 31:760 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    R Welbourn, G. Goldman, L. Kobzik, I.S. Paterson, C.R. Valeri, D. Shepro, and H.B. Hechtman, Role of neutrophil adherence receptors (CD 18) in lung permeability following lower torso ischemia, Circ. Res. 71:82 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Anner, R.P. Kaufman, Jr., L. Kobzik, C.R. Valeri, D. Shepro, and H.B. Hechtman, Pulmonary leukosequestration induced by hind limb ischemia, Ann. Surg. 206: 162 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Anner, R.P. Kaufman, Jr., L. Kobzik, C.R. Valeri, D. Shepro, and H.B. Hechtman, Pulmonary hypertension and leukosequestration after lower torso ischemia, Ann. Surg. 206:642 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    J.M. Klausner, I.S. Paterson, C.R. Valeri, D. Shepro, and H.B. Hechtman, Limb ischemia-induced increase in permeability is mediated by leukocytes and leukotrienes, Ann. Surg. 208:755 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Welbourn, G. Goldman, M. O’riordain, T.F. Lindsay, I.S. Paterson, L. Kobzik, C.R. Valeri, D. Shepro, and H.B. Hechtman, Role for tumor necrosis factor as mediator of lung injury following lower torso ischemia, J. Appl. Physiol. 70:2645 (1991).PubMedGoogle Scholar
  23. 23.
    A. Seekamp, J.S. Warren, D.G. Remick, G.O. Till, and P.A. Ward, Requirements for tumor necrosis factor-β interleukin-1 in limb ischemia/reperfusion injury and associated lung injury, Am. J. Pathol. 143:453 (1993).PubMedGoogle Scholar
  24. 24.
    L.M. Colletti, D.G. Remick, G.D. Burtch, S.L. Kunkel, R.M. Strieter, and D.A. Campbell, Jr., Role of tumor necrosis factor-β in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat, J. Clin. Invest. 85:1936 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    L.M. Colletti, G.D. Burtch, D.G. Remick, S.L. Kunkel, R.M. Strieter, K.S. Guice, K.T. Oldham, and D.A. Campbell, Jr., The production of tumor necrosis factor alpha and the development of a pulmonary capillary injury following hepatic ischemia/reperfusion, Transplantation 49:268 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    N.B. Ratliff, J.W. Wilson, E. Mikat, D.B. Hackel, and T.C. Graham, The lung in hemorrhagic shock. IV. The role of neutrophilic polymorphonuclear leukocytes, Am. J. Pathol. 65:325 (1971).PubMedGoogle Scholar
  27. 27.
    H. Redl, G. Schlag, and D.E. Hammerschmidt, Quantitative assessment of leukostasis in experimental hypovolemic-tramatic shock, Acta Chir. Scand. 150:113 (1984).PubMedGoogle Scholar
  28. 28.
    J.W. Wilson, Leukocyte sequestration and morphologic augmentation in the pulmonary network following hemorrhagic shock and related forms of stress, Adv. Microcirc. 4:197 (1972).Google Scholar
  29. 29.
    R.S. Connell, R.L. Swank, and M.C. Webb, The development of pulmonary ultrastructural lesions during hemorrhagic shock, J. Trauma 15:116 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    P.E. Pepe, R.T. Potkin, D.H. Reus, L.D. Hudson, and C.J. Carrico, Clinical predictors of the adult respiratory distress syndrome, Am. J. Surgery 144:124 (1982).CrossRefGoogle Scholar
  31. 31.
    A.A. Fowler, R.F. Hamman, J.T. Good, K.N. Benson, M. Baird, D.J. Eberle, T.L. Petty, and T.M. Hyers, Adult respiratory distress syndrome: risk with common predispositions, Ann. Intern. Med. 98:593 (1983).PubMedGoogle Scholar
  32. 32.
    U. Haglund and B. Gerdin, Oxygen-free radicals (OFR) and circulatory shock, Circ. Shock 34:405 (1991).PubMedGoogle Scholar
  33. 33.
    G. Poli, F. Biasi, E. Chiarpotto, M.U. Dianzani, A. De Luca, and H. Esterbauer, Lipid peroxidation in human diseases: evidence of red cell oxidative stress after circulatory shock, Free Rad. Biol. Med. 6:167 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    N.B. Vedder, B.W. Fouty, R.K. Winn, J.M. Harlan, and C.L. Rice, Role of neutrophils in generalized reperfusion injury associated with resuscitation from shock, Surgery 106:509 (1989).PubMedGoogle Scholar
  35. 35.
    B.O. Anderson, E.E. Moore, F.A. Moore, J.A. Leff, L.S. Terada, A.H. Harken, and J.E. Repine, Hypovolemic shock promotes neutrophil sequestration in lungs by a xanthine oxidase-related mechanism, J. Appl. Physiol. 71:1862 (1991).PubMedGoogle Scholar
  36. 36.
    M.K. Robinson, J.D. Rounds, R.W. Hong, D.O. Jacobs, and D.W. Wilmore, Glutathione deficiency increases organ dysfunction after hemorrhagic shock, Surgery 112:140 (1992).PubMedGoogle Scholar
  37. 37.
    K.J. Tracey, S.F. Lowry, T.J. Fahey III, J. D. Albert, Y. Fong, D. Hesse, B. Beutler, K.R. Manogue, S. Calvano, H. Wei, A Cerami, and G.T. Shires, Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog, Surg. Gyn. Obstet. 164:415 (1987).Google Scholar
  38. 38.
    K.J. Tracey, B. Beutler, S.F. Lowry, J. Merryweather, S. Wolpe, I.W. Milsark, R.J. Hariri, T.J. Fahey III, A. Zentella, J.D. Albert, G.T. Shires, and A. Cerami, Shock and tissue injury induced by recombinant human cachectin, Science 234:470 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Ferrante, M. Nandoskar, A. Walz, D.H.B. Goh, and I.C. Kowanko, Effects of tumour necrosis factor alpha and interleukin-1 alpha and beta on human neutrophil migration, respiratory burst, and degranulation, Int. Arch. Allergy Applied. Immunol. 86:82 (1988).CrossRefGoogle Scholar
  40. 40.
    Z. Wankowicz, P. Megyeri, and A. Issekutz, Synergy between tumour necrosis factor β and interleukin-1 in the induction of polymorphonuclear leukocyte migration during inflammation, J. Leukocyte Biol. 43:349 (1988).PubMedGoogle Scholar
  41. 41.
    B. A. Pruitt, D.R. Erickson, and A. Morris, Progressive pulmonary insufficiency and other pulmonary complications of thermal injury, J. Trauma 15:369 (1975).PubMedCrossRefGoogle Scholar
  42. 42.
    H.C. Polk, Consensus summary on infection, J. Trauma 19:894 (1979).PubMedGoogle Scholar
  43. 43.
    K.E. Fjellstrom and G. Arturson, Changes in the human complement system following burn trauma, Acta Path. 59:257 (1963).CrossRefGoogle Scholar
  44. 44.
    A.B. Bjornson, W.A. Altemeier, H.S. Bjornson, Changes in humoral components of host defense following burn trauma, Ann. Surg. 186:88 (1977).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Heideman, The effect of thermal injury on hemodynamic, respiratory, and hematologic variables in relation to complement activation, J. Trauma 19:239 (1979).PubMedCrossRefGoogle Scholar
  46. 46.
    G.O. Till, C. Beauchamp, D. Menapace, W. Tourtellotte, Jr., R. Kunkel, K.J. Johnson, and P.A. Ward, Oxygen radical dependent lung damage following thermal injury of rat skin, J. Trauma 23:269 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    P.A. Ward, G.O. Till, R. Kunkel, and C. Beauchamp, Evidence for the role of hydroxyl radical in complement and neutrophil-dependent tissue injury, J. Clin. Invest. 72:789 (1983).PubMedCrossRefGoogle Scholar
  48. 48.
    G.O. Till, W. Tourtellotte, Jr., M.J. Lutz, T. Annesley, and P.A. Ward, Acute lung injury secondary to skin burns: Evidence for role of hydroxyl radical and lipid peroxidation products, Circ. Shock 13:76 (1984).Google Scholar
  49. 49.
    L. Jin, C. Lalonde, and RH. Demling, Lung dysfunction after thermal injury in relation to prostanoid and oxygen radical release, J. Appl. Physiol. 61:103 (1986).PubMedGoogle Scholar
  50. 50.
    J.A. Leff, L.K. Burton, E.M. Berger, B.O. Anderson, C.P. Wilke, and J.E. Repine, Increased serum catalase activity in rats subjected to thermal skin injury, Inflammation 17:199 (1993).PubMedCrossRefGoogle Scholar
  51. 51.
    G.O. Till, and P.A. Ward, Systemic complement activation and acute lung injury, Federation Proc. 45:13 (1986).Google Scholar
  52. 52.
    D.C. Hohn, A. J. Meyers, S.T. Gberini, A Beckmann, R.E. Markison, and A.M. Churg, Production of acute pulmonary injury by leukocytes and activated complement, Surgery 88:48 (1980).PubMedGoogle Scholar
  53. 53.
    S.Z. Perkowski, A.M. Havill, J.T. Flynn, and M.H. Gee, Role of intrapulmonary release of eicosanoids and superoxide anion as mediators of pulmonary dysfunction and endothelial injury in sheep with intermittent complement activation, Circ. Res. 53:574 (1983).PubMedCrossRefGoogle Scholar
  54. 54.
    G.O. Till, K.J. Johnson, R Kunkel, and P.A. Ward, Intravascular activation of complement and acute lung injury: Dependency on neutrophils and toxic oxygen metabolites, J. Clin. Invest. 69:1126 (1982).PubMedCrossRefGoogle Scholar
  55. 55.
    C.W. Imrie, J.C. Ferguson, D. Murphy, and L.H. Blumgart, Arterial hypoxia in acute pancreatitis, Brit. J. Surg. 64:185 (1977).PubMedCrossRefGoogle Scholar
  56. 56.
    J.H.C. Ranson, D.F. Roses, and S.D. Fink, Early respiratory insufficiency in acute pancreatitis, Ann. Surg. 178:75 (1973).PubMedCrossRefGoogle Scholar
  57. 57.
    A.L. Warshaw, P.B. Lesser, M. Rie, D.J. Cullen, The pathogenesis of pulmonary edema in acute pancreatitis, Ann. Surg. 182:505 (1975).PubMedCrossRefGoogle Scholar
  58. 58.
    P. G. Lankisch, G. Rahlf, and H. Koop, Pulmonary complications in fatal acute hemorrhagic pancreatitis, Digest. Dis. Sci. 28:111 (1983).CrossRefGoogle Scholar
  59. 59.
    B. Interiano, I.D. Stuard, and R.W. Hyde, Acute respiratory distress syndrome in pancreatitis, Ann. Intern. Med. 77:923 (1972).PubMedGoogle Scholar
  60. 60.
    L.G. Renner, W.T. Savage, III, J.L. Pantoja, V.J. Renner, Death due to acute pancreatitis: A retrospective analysis of 405 autopsy cases, Digest. Dis. Sci. 30:1005 (1985).PubMedCrossRefGoogle Scholar
  61. 61.
    K.S. Guice, K.T. Oldham, K.J. Johnson, R.G. Kunkel, M.L. Morganroth, and P.A. Ward, Pancreatitisinduced acute lung injury: An ARDS model, Ann. Surg. 208:71 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    K.S. Guice, K.T. Oldham, M.G. Caty, K.J. Johnson, and P.A. Ward, Neutrophil-dependent, oxygen-radical mediated lung injury associated with acute pancreatitis, Ann. Surg. 210:740 (1989).PubMedCrossRefGoogle Scholar
  63. 63.
    W. Marget, The last round against bacterial infections, Infection 18:197 (1990).PubMedCrossRefGoogle Scholar
  64. 64.
    K.L. Brigham and B. Meyrick, Endotoxin and lung injury, Am. Rev. Respir. Dis. 133:913 (1986).PubMedGoogle Scholar
  65. 65.
    R.J. Ulevitch, Recognition of bacterial endotoxin in biologic systems, Lab. Invest. 65:121 (1991).PubMedGoogle Scholar
  66. 66.
    R.L. Danner, R.J. Elin, J.M. Hosseini, R.A. Wesley, J.M. Reilly, and J.E. Parrillo, Endotoxemia in human septic shock, Chest 99:169 (1991).PubMedCrossRefGoogle Scholar
  67. 67.
    R.J. Stumacher, M.J. Kovnat, and W.R. McCabe, Limitations of the usefullness of the Limulus assay for endotoxin, N. Engl. J. Med. 288:1261 (1973).PubMedCrossRefGoogle Scholar
  68. 68.
    S.J.H. van Deventer, H.R. Buller, J. W. Cate, A. Sturk, and W. Pauw, Endotoxemia: an early predictor of septicaemia in febrile patients, Lancet 1:605 (1988).PubMedCrossRefGoogle Scholar
  69. 69.
    H. U. Michie, K.R. Manogue, D.R. Spriggs, A. Revhaug, S. O’Dwyer, C.A. Dinarello, A. Cerami, S.M. Wolff, and D.W. Wilmore, Detection of circulating tumor necrosis factor after endotoxin administration, N. Engl. J. Med. 318:1481 (1988).PubMedCrossRefGoogle Scholar
  70. 70.
    H.R. Michie, D.U. Spriggs, K.R. Manogue, M.L. Sherman, A. Revhaug, W.T. O’Dwyer, K. Arthur, C.A. Dinareilo, A. Cerami, W.M. Wolff, D.W. Kufe, and D.W. Wilmore, Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings, Surgery 104:280 (1988).PubMedGoogle Scholar
  71. 71.
    G.D. Martich, R.L. Danner, M. Ceska, and A.F. Wuffredini, Detection of interleukin-8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents, J. Exp. Med. 173:1021 (1991).PubMedCrossRefGoogle Scholar
  72. 72.
    J.A. Leff, P.E. Parsons, C.E. Day, E.E. Moore, F.A. Moore, M.A. Oppegard, and J.E. Repine, Increased serum catalase activity in septic patients with the adult respiratory distress syndrome, Am. Rev Respir. Dis. 146:985 (1992).PubMedGoogle Scholar
  73. 73.
    J. A. Leff, P.E. Parsons, C.E. Day, N. Taniguchi, M. Jochum, H. Fritz, F.A. Moore, E.E. Moore, J.M. McCord, and J.E. Repine, Serum antioxidants as predictors of adult respiratory distress syndrome in patients with sepsis, Lancet 341:777 (1993).PubMedCrossRefGoogle Scholar
  74. 74.
    P.G. Murphy, D.S. Myers, N.R. Webster, and J.G. Jones, Direct detection of free radical generation in an in vivo model of acute lung injury, Free Rad. Res. Comms., 15:167 (1991).CrossRefGoogle Scholar
  75. 75.
    G. R. Bernard, W.D. Lucht, M.E. Niedermeyer, J.R. Snapper, M.L. Ogletree, and K.L. Brigham, Effect of N-acetylcysteine on the pulmonary response to endotoxin in the awake sheep and upon in vitro granulocyte function, J. Clin. Invest. 73:1772 (1984).PubMedCrossRefGoogle Scholar
  76. 76.
    P.D. Carey, J.K. Jenkins, K. Byrne, C.J. Walsh, A.A. Fowler, and H.J. Sugerman, The neutrophil respiratory burst and tissue injury in septic acute lung injury: The effect of cyclooxygenase inhibition in swine, Surgery 112:45 (1992).PubMedGoogle Scholar
  77. 77.
    W. Leeper-Woodford, P.D. Carey, K. Byrne, B.J. Fisher, C. Blocher, H.J. Sugerman, and A.A. Fowler, Ibuprofen attenuates plasma tumor necrosis factor activity during sepsis-induced acute lung injury, J. Appl. Physiol. 71:915 (1991).PubMedGoogle Scholar
  78. 78.
    P.D. Carey, S.K. Leeper-Wooddford, C.J. Walsh, K. Byrne, A.A. Fowler, and H.J. Sugerman, Delayed cyclo-oxygenase blockade reduces the neutrophil respiratory burst and plasma tumor necrosis factor levels in sepsis-induced acute lung injury, J. Trauma 31:733 (1991).PubMedCrossRefGoogle Scholar
  79. 79.
    Z. Xing, H. Kirpalani, D. Torry, M. Jordana, and J. Gauldie, Polymorphonuclear leukocytes as a significant source of tumor necrosis factor-β in endotoxin-challenged lung tissue, Am. J. Pathol. 143:1009 (1993).PubMedGoogle Scholar
  80. 80.
    K. J. Johnson, J.C. Fantone, J. Kaplan, and PA. Ward, In vivo damage of rat lungs by oxygen metabolites, J. Clin. Invest. 67:983 (1981).PubMedCrossRefGoogle Scholar
  81. 81.
    R.M. Tate, K.M. Vanbenthuysen, C.M. Shasby, and I.F. McMurtry, Oxygen-radical-mediated permeability edema and vasoconstriction in isolated perfused rabbit lungs, Am. Rev. Respir. Dis. 126:80 (1982).Google Scholar
  82. 82.
    D.E. Gannon, X. He, P.A. Ward, J. Varani, and K.J. Johnson, Time-dependent inhibition of oxygen radical induced lung injury, Inflammation 14:509 (1990).PubMedCrossRefGoogle Scholar
  83. 83.
    J. Varani, I. Ginsburg, D.F. Gibbs, P.S. Mukhopadhyay, C. Sulavik, K.J. Johnson, J.M. Weinberg, U.S. Ryan, and P.A. Ward, Hydrogen peroxide-induced cell and tisssue injury: Protective effects of Mn2+, Inflammation 15:291 (1991).PubMedCrossRefGoogle Scholar
  84. 84.
    H.E. May and P.B. McCay, Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids, J. Biol. Chem. 243:2296 (1968).PubMedGoogle Scholar
  85. 85.
    E.S. Stadtman, B.S. Berlett, and P.B. Chock, Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer, Proc. Natl. Acad. Sci. U.S.A. 87:384 (1990).PubMedCrossRefGoogle Scholar
  86. 86.
    M.B. Yim, B.S. Berlett, P.B. Chock, and E.R. Stadtman, Manganese (II)-bicarbonate-mediated catalytic activity for hydrogen peroxide dismutation and amino acid oxidation: Detection of free radical intermediates, Proc. Natl. Acad. Sci. U.S.A. 87:394 (1990).PubMedCrossRefGoogle Scholar
  87. 87.
    B.S. Berlett, P.B. Chock, M.B. Yim, and E.R. Stadtman, Manganese (II) catalyzes the bicarbonate dependent oxidation of amino acids by hydrogen peroxide and the amno acid-facilitated dismutation of hydrogen peroxide, Proc. Natl. Acad. Sci. U.S.A. 87:389 (1990).PubMedCrossRefGoogle Scholar
  88. 88.
    P.B.L. Cheton and F.S. Archibald, Manganous complexes and the generation and scavenging of hydroxyl free radicals, Free Rad. Biol. Med. 5:325 (1988).PubMedCrossRefGoogle Scholar
  89. 89.
    J.M.C. Gutteridge, and J. V. Bannister, Copper plus zinc and manganese superoxide dismutase inhibit deoxyribose degradation by the superoxide-driven fenton reaction at two different stages, Biochem. J. 234:225 (1986).PubMedGoogle Scholar
  90. 90.
    J.S. Bus, S.A. Aust and J.F. Gibson, Superoxide and singlet oxygen catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity, Biochem. Biophys. Res. Commun. 58:749 (1974).PubMedCrossRefGoogle Scholar
  91. 91.
    L.L. Smith, The identification of an accumulation system for diamenes and polyamines into the rat lung and its relevance to paraquat toxicity, Arch. Toxicol. 5:1 (1982).CrossRefGoogle Scholar
  92. 92.
    I.S. Bus, S.Z. Cagen, M. Olgaard, and J.E. Gibson, A mechanism of paraquat toxicity in mice and rats, Toxicol. Appl. Pharmacol. 35:5001 (1976).CrossRefGoogle Scholar
  93. 93.
    T. J. Haley, Review of the toxicology of paraquat (1,1’-Dimethyl-4,4’-bipyridinium Chloride), Clin. Toxicol. 14:1 (1979).PubMedCrossRefGoogle Scholar
  94. 94.
    E. Hoffer, I. Avidor, O. Benjaminov, L. Shenker, A. Tabak, A. Tamir, D. Merzbach, and U. Taitelman, N-acetylcysteine delays the infiltration of inflammatory cells into the lungs of paraquat-intoxicated rats, Toxicol. Appl. Pharmacol. 120:8 (1993).PubMedCrossRefGoogle Scholar
  95. 95.
    J.R. Dawson, K. Norbeck, I. Anundi, and P. Moldeus, The effectiveness of N-acetylcysteine in isolated hepatocytes, against the toxicity of paracetamol, acrolein, and paraquat, Arch. Toxicol. 55:11 (1984).PubMedCrossRefGoogle Scholar
  96. 96.
    E. LeB. Gray, Oxides of nitrogen: Their ocurrence, toxicity, hazard — a brief review, A.M.A. Arch. Ind. Health 19:479 (1959).Google Scholar
  97. 97.
    H.E. Stokinger, Ozone technology: A review of research and industrial experience: 1954–1964, Arch. Environ. Health 10:719 (1965).PubMedGoogle Scholar
  98. 98.
    H.E. Stokinger, Ozone toxicity: Review of literature through 1953, Arch. Indust. Hyg. 9:366 (1953).Google Scholar
  99. 99.
    J.N. Roehm, J.G. Hadley, and D.B. Menzel, Oxidation of unsaturated fatty acids by ozone and nitrogen dioxide, Arch. Environ. Health 23: 142 (1971).PubMedGoogle Scholar
  100. 100.
    B.D. Goldstein, C. Lodi, M.T. Collinson, and O.J. Balchum, Ozone and lipid peroxidation, Arch. Environ. Health 18: 631 (1969).PubMedGoogle Scholar
  101. 101.
    H. V. Thomas, P.K. Meuller, and R.L. Lyman, Lipoperoxidation of lung lipid in rats exposed to nitrogen dioxide, Science 159:532 (1968).PubMedCrossRefGoogle Scholar
  102. 102.
    B.L. Fletcher and A.L. Tappel, Protective effects of dietary α-tocopherol in rats exposed to toxic levels of ozone and nitrogen dioxide, Environ. Res. 6:165 (1973).PubMedCrossRefGoogle Scholar
  103. 103.
    L. Allegra, N.E. Moavero, and C. Rampoldi, Ozone-induced impairment of mucociliary transport and its prevention with N-acetylcysteine, Am. J. Med. 91:67 (1991).CrossRefGoogle Scholar
  104. 104.
    C. von Ritter, R. Be, D.N. Granger, Neutrophilic proteases: mediators of formyl-methionyl-leucyl-phenylalanine-induced ileitis in rats, Gastrointerology 97:605 (1989).Google Scholar
  105. 105.
    J.A. Leff, M.A. Oppegard, E.C. McCarty, C.P. Wilke, P.F. Shanley, C.E. Day, N.K. Ahmed, L.M. Patton, and J.E. Repine, Dimethyl sulfoxide decreases lung neutrophil sequestration and lung leak, J. Lab. Clin. Med. 120:282 (1992).PubMedGoogle Scholar
  106. 106.
    J.E. Repine, J.W. Eaton, M.W. Anders J.R. Hoidal, and R.B. Fox, Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes in vitro: detection with the anti-inflammatory agent, dimethyl sulfoxide, J. Clin. Invest. 64:1642 (1979).PubMedCrossRefGoogle Scholar
  107. 107.
    J.C. Fantone and P.A. Ward, Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions, Am. J. Pathol. 107:397 (1982).Google Scholar
  108. 108.
    S.J. Weiss, Tissue destruction by neutrophils, N Engl. J. Med. 320:365 (1989).PubMedCrossRefGoogle Scholar
  109. 109.
    T. Church and W.A. Pryor Free-radical chemistry of cigarette smoke and its toxicological implications, Environ. Health Perspect. 64:111 (1985).PubMedCrossRefGoogle Scholar
  110. 110.
    W. MacNee, M.M.E. Bridgeman, M. Marsden, E. Drost, S. Lannan, C. Selby, and K. Donaldson, The effects of N-acetylcysteine and glutathione on smoke-induced changes in lung phagocytes and epithelial cells, Am. J. Med. 91:60 (1991).CrossRefGoogle Scholar
  111. 111.
    T. Schaberg, H. Haller, M. Rau, D. Kaiser, M. Fassbender, and H. Lode, Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers, Eur. Respir. J. 5:387 (1992).PubMedGoogle Scholar
  112. 112.
    J.R. Hoidal, R.B. Le Marble, R. Pewrri, and I.E. Repine, Altered oxidative metabolic responses in vitro of alveolar macrophages from asymptomatic cigarette smokers, Am. Rev. Respir. Dis. 123:85 (1981).PubMedGoogle Scholar
  113. 113.
    K.J. Johnson, B.S. Wilson, GO. Till, and P.A. Ward, Acute lung injury in rat caused by immunoglobulin A immune complexes, J. Clin. Invest. 74:358 (1984).PubMedCrossRefGoogle Scholar
  114. 114.
    K.J. Johnson and P.A. Ward, Role of oxygen metabolites in immune complex injury of lung, J. Immunol. 126:2365 (1981).PubMedGoogle Scholar
  115. 115.
    J.E. Rinaldo and R.M. Rogers, Adult respiratory distress syndrome: changing concepts of lung injury and repair, N. Engl. J. Med. 306:900 (1982).PubMedCrossRefGoogle Scholar
  116. 116.
    K.L. Brigham, Mechanisms of lung injury, Clin. Chest Med. 3:9 (1982).PubMedGoogle Scholar
  117. 117.
    M.B. Divertie, The adult respiratory distress syndrome, Mayo Clin. Proc. 57:371 (1982).PubMedGoogle Scholar
  118. 118.
    S. Chollet-Martin, P. Montravers, C. Gibert, C. Elbim, J.M. Desmonts, J.Y. Fagon, and M.A. Gougerot-Pocidalo, Subpopulation of hyperresponsive polymorphonuclear neutrophils in patients with adult respiratory distress syndrome: role of cytokine production, Am. Rev. Respir. Dis. 146:990 (1992).PubMedGoogle Scholar
  119. 119.
    M. C. Tagan, M. Markert, M.D. Schaller, F. Feihl, R. Chiolero, and C.H. Perret, Oxidative metabolism of circulating granulocytes in adult respiratory distress syndrome, Am. J. Med. 91:72 (1991).CrossRefGoogle Scholar
  120. 120.
    G.R. Bernard, N-acetylcysteine in experimental and clinical acute lung injury, Am. J. Med. 91:54 (1991).CrossRefGoogle Scholar
  121. 121.
    C.M. Grum, R.A. Ragsdale, L.H. Ketai, and R.H. Simon, Plasma xanthine oxidase activity in patients with adult respiratory distress syndrome, J. Crit. Care 2:22 (1987).CrossRefGoogle Scholar
  122. 122.
    O.M. Pitkanen, M. Hallman, and S.M. Andersson, Correlation of free oxygen radical-induced lipid peroxidation with outcome in very low birth weight infants, J. Pediatr, 116:760 (1990).PubMedCrossRefGoogle Scholar
  123. 123.
    R.W.I. Cooke, Factors associated with chronic lung disease in preterm infants, Arch. Dis. Child. 66:776 (1991).PubMedCrossRefGoogle Scholar
  124. 124.
    J.R. Wispe, E.F. Bell, and R.J. Roberts, Assessment of lipid peroxidation in newborn infants and rabbits by measurements of expired ethane and pentane: influence of parenteral lipid infusion, Ped. Res. 19:374 (1985).CrossRefGoogle Scholar
  125. 125.
    R.G. Crystal, J.D. Fulmer, W.C. Roberts, M.L. Moss, B.E. Line, and H. Y. Reynolds, Idiopathic pulmonary fibrosis: clinical, histologic, radiologic, physiologic, scintigraphic, cytological, and biochemical aspects, Ann. Intern. Med. 85:769 (1976).PubMedGoogle Scholar
  126. 126.
    L. Hamman and A.R. Rich, Acute diffuse interstitial fibrosis of the lungs, Bull. Johns Hopkins Hosp. 74:177 (1944).Google Scholar
  127. 127.
    J.D. Fulmer, W.C. Roberts, E.R. von Gal, and R.G. Crystal, Morphologic-physiologic correlates of the severity of fibrosis and degree of cellularity in idiopathic pulmonary fibrosis, J. Clin. Invest. 63:665 (1979).PubMedCrossRefGoogle Scholar
  128. 128.
    J.D. Fuller, W.C. Roberts, E.R. von Gal, and R.G. Crystal, Small airways in idiopathic pulmonary fibrosis: comparison of morphologic and physiologic observations, J. Clin. Invest. 60;595 (1977).CrossRefGoogle Scholar
  129. 129.
    A.M. Cantin, S.L. North, G.A. Fells, R.C. Hubbard, and R.G. Crystal, Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis, J. Clin. Invest. 79:1665 (1987).PubMedCrossRefGoogle Scholar
  130. 130.
    A.M. Cantin, R.C. Hubbard, and R.G. Crystal, Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis, Am. Rev Respir. Dis. 139:370 (1989).PubMedCrossRefGoogle Scholar
  131. 131.
    Z. Borok, R. Buhl, G.J. Grimes, A.D. Bokser, R. C. Hubbard, K.J. Holroyd, J.H. Roum, D.B. Czerski, A.M. Cantin, and R.G. Crystal, Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis, Lancet 338:215 (1991).PubMedCrossRefGoogle Scholar
  132. 132.
    D.A. Campbell, L.W. Poulter, and R.M. DuBois, Immunocompetent cells in bronchoalveolar lavage reflect the cell populations in transbronchial biopsies in pulmonary sarcoidosis, Am. Rev. Respir. Dis. 132:1300 (1985).PubMedGoogle Scholar
  133. 133.
    H. Nielsen, J. Frederiksen, D. Sherson, and N. Milman, Comparison of alveolar macrophage and blood monocyte oxidative burst response in pulmonary sarcoidosis, APMIS 98:401 (1990).PubMedCrossRefGoogle Scholar
  134. 134.
    T. Schaberg, M. Rau, H. Stephan, and H. Lode, Increased number of alveolar macrophages expressing surface molecules of the CD11/CD18 family in sarcoidosis and idiopathic pulmonary fibrosis is related to the production of superoxide anions by these cells, Am. Rev. Respir. Dis. 147:1507 (1993).PubMedGoogle Scholar
  135. 135.
    J.A. Simpson, S.E. Smith, and R.T. Dean, Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation, Biochem. Molec. Biology Int. 30:1021 (1993).Google Scholar
  136. 136.
    S.C. Langley, R.K. Brown, and F.J. Kelly, Reduced free-radical-trapping capacity and altered plasma antioxidant status in cystic fibrosis, Pediatr. Res. 33:247 (1993).PubMedCrossRefGoogle Scholar
  137. 137.
    J.H. Roum, R. Buhl, N.G. McElvaney, Z. Borok, R.C. Hubbard, M. Chernick, A.M. Catin, and R.G. Crystal, Cystic fibrosis is characterized by a marked reduction in glutathione levels in pulmonary epithelial lining fluid, Am. Rev. Respir. Dis. 141:87 (1990).Google Scholar
  138. 138.
    B. Salh, K. Webb, P.M. Guyan, J.P. Day, C. Wickens, J. Griffin, J.M. Braganza, and T.L. Dormandy, Aberrant free radical activity in cystic fibrosis, Clin. Chim. Acta 181:65 (1989).PubMedCrossRefGoogle Scholar
  139. 139.
    D.J. Riley and J.S. Kerr, Oxidant injury of the extracellular matrix: potential role in the pathogenesis of pulmonary emphysema, Lung 163:1 (1985).PubMedCrossRefGoogle Scholar
  140. 140.
    A. Janoff, Elastase and emphysema, Am. Rev. Respir. Dis. 132:417 (1985).PubMedGoogle Scholar
  141. 141.
    V.V. Damiano, A. Tsang, U. Kucich, W.R. Abrams, J. Rosenbloom, P. Kimbel, M. Fallahnejad, and G. Weinbaum, Immunolocalization of elastase in human emphysematous lungs, J. Clin. Invest. 78:482 (1986).PubMedCrossRefGoogle Scholar
  142. 142.
    R.M. Senior, H. Tegner, C. Kuhn, K. Ohlsson, B.C. Starcher, and J.A. Pierce, The induction of pulmonary emphysema with human leukocyte elastase, Am. Rev. Respir. Dis. 116:469 (1977).PubMedGoogle Scholar
  143. 143.
    K. Ohlsson, Neutral leukocyte proteases and elastase are inhibited by plasma α1-antitrypsin, Scand. J. Clin. Lab. Invest. 28:251 (1970).CrossRefGoogle Scholar
  144. 144.
    H. Carp, F. Miller, R. Hoidal, and A. Janoff, Potential mechanism of emphysema: alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity, Proc. Natl. Acad. Sci. U.S.A. 779:2041 (1982).CrossRefGoogle Scholar
  145. 145.
    H. Kanazawa, N. Kurihara, K. Hirata, S. Fujimoto, and T. Takeda, The role of free radicals and neutrophil elastase in development of pulmonary emphysema, Jap J. Med. 31:857 (1992).Google Scholar
  146. 146.
    J.M. Petruska, S.H.Y. Wong, F.W. Sunderman, Jr., and B.T. Mossman, Detection of lipid peroxidation in lung and in bronchoalveolar lavage cells and fluid, Free Rad. Biol. Med. 9:51 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Daniel J. Brackett
    • 1
    • 2
    • 3
  • Paul B. McCay
    • 1
    • 3
  1. 1.Departments of Surgery and AnesthesiologyUniversity of Oklahoma Health Sciences CenterUSA
  2. 2.Veterans Affairs Medical CenterUSA
  3. 3.Free Radical Biology and Aging ProgramOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations