Physiology and Metabolism of Thermus

  • Richard Sharp
  • Doug Cossar
  • Ralph Williams
Part of the Biotechnology Handbooks book series (BTHA, volume 9)


The metabolism of thermophilic bacteria was extensively reviewed in 1979 by Ljungdahl. More recent books, monographs, and reviews that bear on the physiology of Thermus include those of Gould and Corry (1986), Brock (1986), Herbert and Codd (1986), Bergquist et al. (1987), Krulwich and Ivey (1990), Edwards (1990), Kristjansson (1992), and Herbert and Sharp (1992).


Thermus Strain Pyruvate Carboxylase Thermophilic Bacterium Phosphoglycerate Kinase Thermophilic Microorganism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ado, Y., Kawamoto, T., Masunaga, I., Takayama, K., Takasawa, S., and Kimura, K., 1982, Production of 1-malic acid with immobilized thermophilic bacterium Thermus rubens nov. sp, Enz. Eng. 6:303–304.Google Scholar
  2. Aleksandrushkina, N. I., and Egorova, L. A., 1978, Nucleotide make-up of the DNA of the thermophilic bacteria of the genus Thermus, Mikrobiol. 47:250–252.Google Scholar
  3. Alfredsson, G. A., Baldursson, S., and Kristjansson, J. K., 1985, Nutritional diversity among Thermus spp, isolated from Icelandic hot springs, Systemat. Appl. Microbiol. 6:308–311.CrossRefGoogle Scholar
  4. Allgood, G. S., and Perry, J. J., 1985, Paraquat toxicity and effect of hydrogen peroxide on thermophilic bacteria, J. Free Radicals Biol. Med. 1:233–237.CrossRefGoogle Scholar
  5. Allgood, G. S., and Perry, J. J., 1986, Effect of methyl viologen and oxygen concentration on thermophilic bacteria, J. Basic Microbiol. 26:379–382.CrossRefGoogle Scholar
  6. Baldursson, S., and Kristjansson, K., 1990, Analysis of nitrate in food extracts using a thermostable formate-linked nitrate reductase enzyme system, Biotechnol. Tech. 4: 211–214.CrossRefGoogle Scholar
  7. Barnes, L. D., and Stellwagen, E., 1973, Enolase from the thermophile Thermus XI, Biochemistry 12:1559–1565.PubMedCrossRefGoogle Scholar
  8. Bergquist, P. L., Love, D. R., Croft, J. E., Streiff, M. B., Daniel, R. M., and Morgan, W. H., 1987, Genetics and potential biotechnological applications of thermophilic and extremely thermophilic microorganisms, Biotechnol. Genet. Eng. Rev. 5:199–244.PubMedGoogle Scholar
  9. Bogdanova, T. I., and Loginova, L. G., 1986, Influence of amino acids and vitamins on the development of the thermophilic bacteria Bacillus stearothermophilus and Thermus ruber isolated on a medium containing paraffin, Mikrobiologia. 55:570–574.Google Scholar
  10. Bowen, D., Littlechild, J. A., Fothergill, J. E., Watson, H. C., and Hall, L., 1988, Nucleotide sequence of the phosphoglycerate kinase gene from the extreme thermophile Thermus thermophilus. Comparison of the deduced amino acid sequence with that of the meso-philic yeast phosphoglycerate kinase. Biochem. J. 254:509–517.PubMedGoogle Scholar
  11. Bridger, G. P., and Sundaram, T. K., 1976, Occurrence of phosphoenolpyruvate carboxylase in the extremely thermophilic bacterium Thermus aquaticus, J. Bacteriol. 125:1211–1213.PubMedGoogle Scholar
  12. Brock, T. D., and Freeze, H., 1969, Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile, J. Bacteriol. 98:289–297.PubMedGoogle Scholar
  13. Brock, T. D., 1978, The Genus Thermus, in: Microorganisms and Life at High Temperatures, Springer Verlag, New York, chap. 4.CrossRefGoogle Scholar
  14. Brock, T. D., 1986, Thermophiles: General Molecular, and Applied Microbiology, New York: John Wiley.Google Scholar
  15. Brock, T. D., and Brock, M. L., 1971, Temperature optimum of nonsulphur bacteria from a spring at 90 C, Nature 233:494–495.PubMedCrossRefGoogle Scholar
  16. Brock, T. D., 1981, Extreme thermophiles of the genera Thermus and Sulfolobus in: The Prokaryotes (M. P. Starr, H. Stalp, H. G. Truper, A. G. Balows, H. G. Schlegel, eds.), Berlin, Heidelberg, New York: Springer, p. 978.Google Scholar
  17. Cass, K. H., and Stellwagen, E., 1975, A thermostable phosphofructokinase from the extreme thermophile Thermus X1, Arch. Biochem. Biophys. 171:682–694.PubMedCrossRefGoogle Scholar
  18. Castenholz, R. W., 1969, Thermophilic blue-green algae and the thermal environment, Bacteriol. Rev. 33: 476–504.PubMedGoogle Scholar
  19. Chin, N. W., and Trela, J. M., 1973, Comparison of acetohydroxy-acid synthetases from two extreme thermophilic bacteria, J. Bacteriol. 114:674–678.PubMedGoogle Scholar
  20. Cocco, D., Rinaldi, A., Savini, I., Cooper, J. M., and Bannister, J. V., 1988, NADH oxidase from the extreme thermophile Thermus aquaticus YT1: purification and characterization, Eur. J. Biochem. 174: 267–271.PubMedCrossRefGoogle Scholar
  21. Cornetta, S., Sonnleitner, B., Sidler, W., and Fiechter, A., 1982, Population distribution of aerobic extremely thermophilic microorganisms in an Icelandic natural hot spring, Eur. J. Appl. Microbiol. Biotechnol. 16:151–156.CrossRefGoogle Scholar
  22. Cossar, D., and Sharp, R. J., 1986, Preliminary physiological studies on a new denitrifying strain of Thermus. Abstracts of XIV International Congress of Microbiology, PII-9:196.Google Scholar
  23. Cossar, D., and Sharp, R. J., 1989, Loss of pigmentation in: Thermus spp., in: Microbiology of Extreme Environments and its Potential for Biotechnology (M. S. da Costa, J. C. Duarte, and R. A. D. Williams, eds.), 385 London, Elsevier.Google Scholar
  24. Croft, J. E., Love, D. R., and Bergquist, P. L., 1987, Expression of leucine genes from an extremely thermophilic bacterium in E. coli, Mol. Gen. Genet. 210:490–497.CrossRefGoogle Scholar
  25. Cunin, R., Glansdorff, N., Pierard, A., and Stalon, V., 1986, Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50:314–352.PubMedGoogle Scholar
  26. Curran, M. P., Daniel, R. M., Guy, G. R., and Morgan, H. W., 1985, A specific L-asparaginase from Thermus aquaticus, Arch. Biochem. Biophys. 241:571–576.PubMedCrossRefGoogle Scholar
  27. Degryse, E., and Glansdorff, N., 1976, Metabolic function of the glyoxylic shunt in an extreme thermophilic strain of the genus Thermus, Arch. Int. Physiol. Biochim. 84:598–599.PubMedGoogle Scholar
  28. Degryse, E., and Glansdorff, N., 1981, Studies on the central metabolism of Thermus aquaticus an extreme thermophilic bacterium: Anaplerotic reactions and their regulation, Arch. Microbiol. 129:173–177.CrossRefGoogle Scholar
  29. Degryse, E., Glansdorff, N., and Pierard, A., 1976, Arginine biosynthesis and degradation in an extreme thermophile strain ZO5, Arch. Int. Physiol. Biochim. 84:599–601.PubMedGoogle Scholar
  30. Degryse, E., Glansdorff, N., and Pierard, A., 1978, A comparative study of extreme thermophilic bacteria belonging to the genus Thermus, Arch. Microbiol. 117:189–196.PubMedCrossRefGoogle Scholar
  31. Edwards, C., 1990, Microbiology of Extreme Environments, Open University Press, Milton Keynes, England.Google Scholar
  32. Fee, J. A., Kuila, D., Mather, M. W., Yoshida, T., 1986, Respiratory proteins from extremely thermophilic aerobic bacteria, Biochim. Biophys. Acta. 853:153–185.PubMedCrossRefGoogle Scholar
  33. Freeze, H., and Brock, T. D., 1970, Thermostable aldolase from Thermus aquaticus, J. Bac-teriol. 101:541–550.Google Scholar
  34. Fujita, S. C., Oshima, T., and Imahori, K., 1976, Purification and properties of D-glycer-aldehyde-3-phosphate dehydrogenase from an extreme thermophile, Thermus thermo-philus strain HB8, Eur. J. Biochem. 64: 57–68.PubMedCrossRefGoogle Scholar
  35. Gould, G. W., and Corry, J. C. L., 1986, Microbial Growth and Survival in Extremes of Environment, Academic Press, London.Google Scholar
  36. Harris, J. I., Hocking, J. D., Runswick, M. J., Suzuki, K., and Walker, J. E., 1980, D-glyceraldehyde-3-phosphate dehydrogenase. The purification and characterisation of the enzyme from the thermophiles Bacillus stearothermophilus and Thermus aquaticus, Eur. J. Biochem. 108:535–547.PubMedCrossRefGoogle Scholar
  37. Hengartner, H., Kolb, E., and Harris, J. I., 1976, Phosphofructokinase from thermophilic microorganisms, in: Enzymes and Proteins from Thermophilic Microorganisms (H. Zuber, ed.), Basel, Birkhauser, pp. 199–206.CrossRefGoogle Scholar
  38. Herbert, R. A., and Codd, G. A., 1986, Microbes in Extreme Environments. Academic Press, London.Google Scholar
  39. Herbert, R. A., and Sharp, R. J., 1992, Molecular Biology and Biotechnology of Extremophiles, Blackie, Glasgow.CrossRefGoogle Scholar
  40. Hickey, C. W., and Daniel, R. M., 1979, The electron transport system of an extremely thermophilic bacterium, J. Gen. Microbiol. 114:195–200.CrossRefGoogle Scholar
  41. Higa, E. H., and Ramaley, R. F., 1973, Purification and properties of threonine deaminase from the X1 isolate of the genus Thermus, J. Bacteriol. 114:556–562.PubMedGoogle Scholar
  42. Hishinuma, F., Hiria, K., and Sakaguchi, K., 1977, Thermophilic polynucleotide Phosphorylase from Thermus thermophilus. Purification and properties of an altered form of enzyme which lacks phosphorolytic activity to polynucleotide, Eur. J. Biochem. 77:575–583.PubMedCrossRefGoogle Scholar
  43. Hocking, J. D., and Harris, J. I., 1973, Purification by affinity chromatography of thermostable glyceraldehyde-3-phosphate dehydrogenase from Thermus aquaticus, FEBS Lett. 34:280–284.PubMedCrossRefGoogle Scholar
  44. Hocking, J. D., and Harris, J. I., 1980, D-glyceraldehyde-3-phosphate dehydrogenase. Amino acid sequence of the enzyme from the extreme thermophile Thermus aquaticus. Eur. J. Biochem. 108:567–579.PubMedCrossRefGoogle Scholar
  45. Holtom, G. J., 1991, The physiology and biochemistry of glutamate transport and utilisation in the genus Thermus. Ph.D. Thesis, University of London.Google Scholar
  46. Holtom, G. J., Gossar, D., Sharp, R., and Williams, R. A. D., 1989, Amino acid utilization by strains of the genus Thermus, in: Microbiology of Extreme Environments and Its Potential for Biotechnology (M. S. da Costa, J. C. Duarte, and R. A. D. Williams, eds.), Elsevier, London.Google Scholar
  47. Holtom, G. J., Sharp, R. J., and Williams, R. A. D., 1993, Sodium-stimulated transport of glutamate by Thermus thermophilus strain B, J. Gen. Microbiol. 139:2245–2250.CrossRefGoogle Scholar
  48. Horikoshi, K., and Grant, W. D., 1991, Superbugs: Microorganisms in Extreme Environments. Japan Scientific Societies: Tokyo, and Springer Verlag, Berlin.Google Scholar
  49. Horiuchi, T., Tomizawa, J., and Novick, A., 1962, Isolation and properties of bacteria capable of high rates of β-galactosidase synthesis, Biochem. Biophys. Acta. 55:152–163.PubMedCrossRefGoogle Scholar
  50. Hudson, J. A., Morgan, H. W., and Daniel, R. M., 1987, Numerical classification of some Thermus isolates from Icelandic hot springs, Syste. Appl. Microbiol. 9:218–223.CrossRefGoogle Scholar
  51. Hudson, J. A., Morgan, H. W., and Daniel, R. M., 1989, Numerical classification of Thermus isolates from globally distributed hot springs, Syst. Appl. Microbiol. 11:250–256.CrossRefGoogle Scholar
  52. Kaledin, A. S., Slyusarenko, A. G., and Gorodetskii, S. I., 1981, Isolation and properties of DNA polymerase from the extreme thermophilic bacterium Thermus flavus, Biokhimiia, 46:1576–1584.PubMedGoogle Scholar
  53. Kenkel, T., and Trela, J. M., 1979, Protein turnover in the extreme thermophile Thermus aquaticus, J. Bacteriol. 140:543–546.PubMedGoogle Scholar
  54. Kirino, H., and Oshima, T., 1991, Molecular cloning and nucleotide sequence of 3-iso-propylmalate dehydrogenase gene (leuB) from an extreme thermophile Thermus aquaticus YT1. J. Biochem. 109:852–857.PubMedGoogle Scholar
  55. Koh, C. L., 1985, Detection and purification of plasmids present in Thermus strains from Icelandic hot springs, Mircen. J. 1:77–81.CrossRefGoogle Scholar
  56. Koyama, Y., and Furukawa, K., 1990, Cloning and sequence analysis of tryptophan synthetase genes of an extreme thermophile Thermus thermophilus HB27: Plasmid transfer from replica-plated Escherichia coli recombinant colonies to competent T. thermophilus cells, J. Bacteriol. 172:3490–3495.PubMedGoogle Scholar
  57. Kristjansson, J. K., 1992, Thermophilic Bacteria, Boca Raton: CRC Press.Google Scholar
  58. Kristjansson, J. K., Hregvidsson, G. O., and Alfredsson, G. A., 1986, Isolation of halotolerant Thermus spp. from submarine hot springs in Iceland, Appl. Environ. Microbiol. 52:1313–1316.PubMedGoogle Scholar
  59. Krulwich, T. A., and Ivey, D. A., 1990, Bioenergetics in extreme environments, in: The Bacteria, Vol XII, Bacterial Energetics (T. A. Krulwich, ed.), Academic Press, New York, pp. 417–447.Google Scholar
  60. Kuhn, H., Friedrich, U., and Fiechter, A., 1979, Defined minimal media for a thermophilic Bacillus sp. developed by a chemostat pulse and shift technique, Eur. J. Appl. Microbiol. Biotechnol. 6:341–349.CrossRefGoogle Scholar
  61. Kunai, K., Machida, M., Matsuzawa, H., and Ohta, T., 1986, Nucleotide sequence and characteristics of the gene for L-lactate dehydrogenase of Thermus caldophilus GK24 and the deduced amino acid sequence of the enzyme, Eur. J. Biochem. 160:433–440.PubMedCrossRefGoogle Scholar
  62. Littlechild, J. A., Davies, G. J., Gamblin, S. J., and Watson, H. C., 1987, Phosphoglycerate kinase from the extreme thermophile Thermus thermophilus: crystallization and preliminary X-ray data, FEBS Lett. 225:123–126.CrossRefGoogle Scholar
  63. Loginova, L. G., and Egorova, L. A., 1975, An obligately thermophilic bacterium, Thermus ruber from hot springs in Kamchatka, Microbiologiya 46:661–665.Google Scholar
  64. Ljungdahl, L. G., 1979, Physiology of thermophilic bacteria, Adv. Microb. Physiol. 19:149–243.PubMedCrossRefGoogle Scholar
  65. Luscombe, B. M., and Greig, T. R. G., 1971, Effect of varying growth rate on the morphology of Arthrobacter, J. Gen. Microbiol. 69:433–434.CrossRefGoogle Scholar
  66. Maas, E., Popischal, H., Kopiin, R., and Biswanger, H., 1992, Multi-enzyme complexes in thermophilic organisms: isolation and characterisation of the pyruvate dehydrogenase complex from Thermus aquaticus AT62, J. Gen. Microbiol. 138:795–802.CrossRefGoogle Scholar
  67. Machida, M., Matsuzawa, H., and Ohta, T., 1985a, Fructose 1,6-bisphosphate dependent L-lactate dehydrogenase from Thermus aquaticus YT-1, an extreme thermophile: activation by citrate and modification reagents and comparison with Thermus caldophilus GK24 L-lactate dehydrogenase, J. Biochem. 97:899–909.PubMedGoogle Scholar
  68. Machida, M., Yokoyama, S., Matsuzawa, H., Miyazawa, T., and Ohta, T., 1985b, Allosteric effect of fructose 1,6-bisphosphate on the conformation of NAD+ as bound to L-lactate dehydrogenase from Thermus caldophilus GK24, J. Biol. Chem. 260:16143–16147.PubMedGoogle Scholar
  69. MacMichael, G. J., 1988, Effects of oxygen and methyl viologen on Thermus aquaticus, J. Bacteriol. 170:4995–4998.PubMedGoogle Scholar
  70. McKay, A., Quilter, J., and Jones, C. W., 1982, Energy conservation in the extreme thermophile Thermus thermophilus HB8, Arch. Microbiol. 131:43–50.CrossRefGoogle Scholar
  71. Meister, A., and Anderson, M. E., 1983, Glutathione, Ann. Rev. Biochem. 52:711–760.PubMedCrossRefGoogle Scholar
  72. Munster, M. J., Munster, A. P., Woodrow, J. R., and Sharp, R. J., 1986, Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA, J. Gen. Microbiol. 132:1677–1683.PubMedGoogle Scholar
  73. Nagahari, K., Koshikawa, T., and Sakaguchi, K., 1980, Cloning and expression of the leucine gene from Thermus thermophilus in Escherichia coli, Gene 10:137–145.PubMedCrossRefGoogle Scholar
  74. Nojima, H., Oshima, T., and Noda, H., 1979, Purification and properties of phosphogly-cerate kinase from Thermus thermophilus HB8, J. Biochem. 85:1509–1517.PubMedGoogle Scholar
  75. Oshima, T., and Soda, K., 1989, Thermostable amino acid dehydrogenases: applications and gene cloning, Trends Biotechnol. 7:210–214.CrossRefGoogle Scholar
  76. Oshima, T., and Imahori, K., 1974, Description of Thermus thermophilus, a non-sporulating thermophilic bacterium from a Japanese Thermal Spa, Int. J. System. Bacteriol. 24:102–112.CrossRefGoogle Scholar
  77. Posmogora, I. N., 1975, Mikrobiologiya 44:492.Google Scholar
  78. Pask-Hughes, R., and Williams, R. A. D., 1975, Extremely thermophilic gram negative bacteria from hot tap water, J. Gen. Microbiol. 88:321–328.PubMedCrossRefGoogle Scholar
  79. Pask-Hughes, R. A., and Williams, R. A. D., 1977, Yellow pigmented strains of Thermus spp. from Icelandic hot springs, J. Gen. Microbiol. 102:375–383.CrossRefGoogle Scholar
  80. Ramaley, R. F., and Hixson, J., 1970, Isolation of a non-pigmented thermophilic bacterium similar to Thermus aquaticus, J. Bacteriol. 103: 527–528.PubMedGoogle Scholar
  81. Ramaley, R. F., Bitzinger, K., Carroll, R. M., and Wilson, R. B., Isolation of a new, pink, obligately thermophilic gram-negative bacterium (K-2 Isolate), Int. J. Syst. Bacteriol. 25:357.Google Scholar
  82. Ruffett, M., Hammond, S., Williams, R. A. D., and Sharp, R. J., 1992, A taxonomic study of red pigmented gram negative thermophiles. Abstracts of Thermophiles: Science and Technology, Reykjavik, Iceland p74.Google Scholar
  83. Saiki, T., Kimura, R., and Arima, K., 1972, Isolation and characterization of extremely thermophilic bacteria from hot springs, Agric. Biol. Chem. 36:2357–2366.CrossRefGoogle Scholar
  84. Saiki, T., Shinshi, H., and Arima, K., 1973, Studies on homoserine dehydrogenase from an extreme thermophile, Thermus flavus AT62: Partial purification and properties, J. Biochem. 74:1239–1248.PubMedGoogle Scholar
  85. Santos, M. N. A., Williams, R. A. D., and da Costa, M. S., 1989, Numerical taxonomy of Thermus isolates from hot springs in Portugal, Systemat. Appl. Microbiol. 12:310–315.CrossRefGoogle Scholar
  86. Sato, S., Nakada, Y., Kanaya, S., and Tanaka, T., 1988, Molecular cloning and nucleotide sequence of Thermus thermophilus HB8 trpE and trpG, Biochim. Biophys. Acta. 950:303–312.PubMedCrossRefGoogle Scholar
  87. Schroeder, G., Matsuzawa, H., and Ohta, T., 1988, Involvement of the conserved histidine-188 residue in the L-lactate dehydrogenase from Thermus caldophilus GK24 in allosteric regulation by fructose 1,6-bisphosphate, Biochem. Biophys. Res. Comm. 152:1236–1241.PubMedCrossRefGoogle Scholar
  88. Sonnleitner, B., 1983, Biotechnology of thermophilic bacteria—growth, products and applications, Adv. Biochem. Eng. Biotechnol. 28:69–138.Google Scholar
  89. Sonnleitner, B., Cornetta, S., and Feichter, A., 1982, Growth kinetics of Thermus thermophilus, Eur. J. Appl. Microbiol. Biotechnol. 15:75–82.CrossRefGoogle Scholar
  90. Sharp, R. J., and Williams, R. A. D., 1988, Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA:DNA homology of Thermus ruber and Thermus aquaticus, Appl. Environ. Microbiol. 54:2049–2053.PubMedGoogle Scholar
  91. Stellwagen, E., and Thompson, S. T., 1979, Activation of Thermus phosphofructokinase by monovalent cations, Biochim. Biophys. Acta. 569:6–12.PubMedCrossRefGoogle Scholar
  92. Sundaram, T. K., and Bridger, G. P., 1979, Regulatory characteristics of phosphoenolpy-ruvate carboxylase from the extreme thermophile, Thermus aquaticus, Biochim. Biophys. Acta. 570:406–410.CrossRefGoogle Scholar
  93. Suzuki, S., Oshima, M., and Akamatsu, Y., 1982, Radiation damage to membranes of the thermophilic bacterium Thermus thermophilus HB-8: Membrane damage without concomitant lipid peroxidation, Radiat. Res. 91:564–572.PubMedCrossRefGoogle Scholar
  94. Taguchi, H., Yamashita, M., Matsuzawa, H., and Ohta, T., 1982, Heat stable and fructose 1,6-bisphosphate activated L-lactate dehydrogenase from an extremely thermophilic bacterium, J. Biochem. 91:1343–1348.PubMedGoogle Scholar
  95. Taguchi, H., Hamaoki, M., Matsuzawa, H., Ohta, T., 1983, Heat stable extracellular proteolytic enzyme produced by Thermus caldophilus strain GK24 an extremely thermophilic bacterium, J. Biochem. 93:7–13.PubMedGoogle Scholar
  96. Taguchi, H., Matsuzawa, H., and Ohta, T., 1984, Lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium, Eur. J. Biochem. 145:283–290.PubMedCrossRefGoogle Scholar
  97. Tanaka, T., Kawano, N., and Oshima, T., 1981, Cloning of 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification of the gene product, J. Biochem. 89:677–682.PubMedGoogle Scholar
  98. Ulrich, J. T., McFeters, G. A., and Temple, K. L., 1972, Induction and characterisation of β-galactosidase in an extreme thermophile, J. Bacteriol. 110:691–698.PubMedGoogle Scholar
  99. Vali, Z., Kilar, F., Lakatas, S., Venyaminov, S. A., and Zavodsky, P., 1980, L-Alanine dehydrogenase from Thermus thermophilus, Biochim. Biophys. Acta. 615:34–47.PubMedCrossRefGoogle Scholar
  100. Venegas, A., Vicuna, R., Alonso, A., Valdes, F., and Yudelevich, A., 1980, A rapid procedure for purifying a restriction endonuclease from Thermus thermophilus (Tth 1), FEBS Lett. 109:156–158.PubMedCrossRefGoogle Scholar
  101. Verhoeven, J. A., Schenk, K., Meyer, R. R., and Trela, J. M., 1986, Purification and characterisation of an inorganic pyrophosphatase from the extreme thermophilic T. aquaticus, J. Bact. 168:318–321.PubMedGoogle Scholar
  102. Walsh, K. A. J., Daniel, R. M., and Morgan, H. W., 1983, A soluble NADH dehydrogenase (NADH: ferricyanide oxidoreductase) from Thermus aquaticus strain T351, Biochem. J. 209:427–433.PubMedGoogle Scholar
  103. Walker, J. M., and Wang, Y. X., 1993, Purification of aspartate aminotransferase from Thermus aquaticus, Biochem. Molec. Biol. Internat. 29:867–873.Google Scholar
  104. Ward, O. P., and Moo-Young, M., 1988, Thermostable enzymes, Biotechnol. Adv. 6:39–69.PubMedCrossRefGoogle Scholar
  105. Weitzman, P. J. D., and Jaskowska-Hodges, H., 1982, Patterns of nucleotide utilisation in bacterial succinate thiokinases, FEBS Lett. 143:237–240.PubMedCrossRefGoogle Scholar
  106. Xu, J., Oshima, T., and Yoshida, M., 1990, Tetramer-dimer conversion of phosphofructokinase from Thermus thermophilus induced by its allosteric effects, J. Mol. Biol. 215:597–606.PubMedCrossRefGoogle Scholar
  107. Xu, J., Oshima, T., and Yoshida, M., 1991a, Phosphoenol pyruvate insensitive phospho-fructokinase isozyme from Thermus thermophilus HB8, J. Biochem. 109:199–203.PubMedGoogle Scholar
  108. Xu, J., Seki, M., Denda, K., and Yoshida, M., 1991b, Molecular cloning of phosphofructo-kinase 1 gene from a thermophilic bacterium, Thermus thermophilus, Biochim. Biophys. Acta. 176:1313–1318.Google Scholar
  109. Yagi, T., Hon-Nami, K., and Ohnishi, T., 1988, Purification and characterization of two types of NADH-quinone reductase from Thermus thermophilus HB8, Biochemistry 27:2008–2013.PubMedCrossRefGoogle Scholar
  110. Yokoyama, K., Oshima, T., and Yoshida, M., 1990, Thermus thermophilus membrane-associated ATPase. Indication of a eubacterial V-type ATPase, J. Biol. Chem. 265:21946–21950.PubMedGoogle Scholar
  111. Yoshida, M., Oshima, T., and Imahori, K., 1971, The thermostable allosteric enzyme: phos-phofructokinase from an extreme thermophile, Biochem. Biophys. Res. Commun. 43:36–39.PubMedCrossRefGoogle Scholar
  112. Yoshida, M., and Oshima, T., 1971, The thermostable allosteric nature of fructose 1,6-bisphosphatase from an extreme thermophile, Biochem. Biophys. Res. Comms. 45:495–500.CrossRefGoogle Scholar
  113. Yoshida, M., Oshima, T., and Imahori, K., 1973, Fructose-1,6-bisphosphatase of an extreme thermophile, J. Biochem. 74:1183–1191.PubMedGoogle Scholar
  114. Yoshida, M., 1972, Allosteric nature of thermostable phosphofructokinase from an extreme thermophilic bacterium, Biochemistry 11:1087–1093.PubMedCrossRefGoogle Scholar
  115. Yoshizaki, F., Oshima, T., and Imahori, K., 1971, Studies on phosphoglucomutase from an extreme thermophile Flavobacterium thermophilum HB8, J. Biochem. 69:1083–1089.PubMedGoogle Scholar
  116. Yoshizaki, F., and Imahori, K., 1979a, Properties of phosphoenolpyruvate carboxykinase from an extreme thermophile, Thermus thermophilus HB8, Agric. Biol. Chem. 43:397–399.CrossRefGoogle Scholar
  117. Yoshizaki, F., and Imahori, K., 1979b, Regulatory properties of pyruvate kinase from an extreme thermophile Thermus thermophilus HB8, Agric. Biol. Chem. 43:527–536.CrossRefGoogle Scholar
  118. Yoshizaki, F., and Imahori, K., 1979c, Key role of phosphoenolpyruvate in the regulation of glycolysis-gluconeogenesis in Thermus thermophilus HB8, Agric. Biol. Chem. 43:537–545.CrossRefGoogle Scholar
  119. Zakharov, S. D., and Kuz’mina, V. P., 1992, Subunit composition of ATP-synthase from the thermophilic bacterium Thermus thermophilus, Biokhimia 57:777–786.Google Scholar
  120. Zimmerman, B. H., Nitsche, C. I., Fee, J. A., Rusnak, F., and Munck, E., 1988, Properties of a copper-containing cytochrome ba3: a second terminal oxidase from the extreme-thermophile Thermus thermophilus, Proc. Natl. Acad. Sci. USA 85:5779–5783.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Richard Sharp
    • 1
  • Doug Cossar
    • 2
  • Ralph Williams
    • 3
  1. 1.Centre for Applied Microbiology and ResearchSalisbury, WiltshireUK
  2. 2.Cangene CorporationMississaugaCanada
  3. 3.Biochemistry Department, Faculty of Basic Medical SciencesQueen Mary & Westfield CollegeLondonUK

Personalised recommendations