Advertisement

Abstract

The total momentum and energy conservation relations between particle kinetic energy and wave energy is satisfied for the plasma-maser instability. The Manley-Rowe relation for plasma waves is violated and as a result an efficient energy up-conversion from the low-frequency mode to the high-frequency mode is possible even for a normal unreversed electron population in plasma turbulence. The plasma-maser instability always coexists with the quasilinear interaction, thus it has a potential importance to interpret numerous experiments in fusion and astrophysical plasmas.

Keywords

Plasma Wave Resonant Mode Langmuir Wave Electron Distribution Function Wave Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. Nambu, Phys. Rev. Letters 34, 387 (1975).ADSCrossRefGoogle Scholar
  2. (2).
    V. N. Tsytovich, L. Stenflo, and H. Wilhelmsson, Phys. Scripta 11, 251 (1975).ADSCrossRefGoogle Scholar
  3. (3).
    M. N. Rosenbluth, B. Coppi and R. N. Sudan, Ann. Phys. 55, 248 (1969).ADSCrossRefGoogle Scholar
  4. (4).
    K. Nishlkawa, J. Phys. Soc. Japan 29, 449 (1970).ADSCrossRefGoogle Scholar
  5. (5).
    R. C. Davidson, Methods In Nonlinear Plasma Theory (New York: Academic Press, 1972).Google Scholar
  6. (6).
    A. A. Galeev and R. Z. Sagdeev, Basic Plasma Physics I (Amsterdam: North-Holland Publishing Company, 1983), edited by A. A. Galeev and R. N. Sudan, p. 677.Google Scholar
  7. (7).
    S. B. Isakov, V. S. Krivitskii and V. N. Tsytovich, Zh. Eksp. Teor. Fiz. 90, 933 (1986) [Sov. Phys. JETP 63, 545 (1986)].ADSGoogle Scholar
  8. (8).
    M. Nambu, T. Hada, S. N. Sarma and S. Bujarbarua, J. Phys. Soc. Japan 60, 3004 (1991).ADSCrossRefGoogle Scholar
  9. (9).
    M. Nambu, Laser and Particle Beams 1, 427 (1983).ADSCrossRefGoogle Scholar
  10. (10).
    V. S. Krivitsky and S. V. Vladimirov, J. Plasma Phys. 46, 209 (1991).ADSCrossRefGoogle Scholar
  11. (11).
    V. S. Krivitsky, V. N. Tsytovich and S. V. Vladimirov, Phys. Reports 218, 141 (1992).ADSCrossRefGoogle Scholar
  12. (12).
    M. Nambu, J. Phys. Soc. Japan 54, 2361 (1985).ADSCrossRefGoogle Scholar
  13. (13).
    M. Nambu and T. Hada, Phys. Fluids B5, March issue (1993), in press.Google Scholar
  14. (14).
    S. N. Sarma, S. Bujarbarua, M. Nambu and H. Fujiyama, Phys. Fluids B1, 506 (1989).ADSGoogle Scholar
  15. (15).
    M. Nambu, S. Bujarbarua and S. N. Sarma, Phys. Rev. 35A, 798 (1987).ADSGoogle Scholar
  16. (16).
    J. M. Manley and H. E. Rowe, Proc. of IRE 44. 904 (1956).CrossRefGoogle Scholar
  17. (17).
    C. F. Kennel and H. E. Petschek, J. Geophys. Res. 71, 1 (1966).ADSCrossRefGoogle Scholar
  18. (18).
    H. A. Haus, IRE Transactions on Microwave Theory and Technique, MTT-6, 317 (1958).ADSCrossRefGoogle Scholar
  19. (19).
    K. Papadopoulos, K. Ko and V. Tripathi, Phys. Rev. Letters 51, 463 (1983).ADSCrossRefGoogle Scholar
  20. (20).
    G. Grynberg and P. R. Berman, Phys. Rev. 43A, 3994 (1991).ADSGoogle Scholar
  21. (21).
    M. Nambu, S. N. Sarma and S. Bujarbarua, Phys. Fluids B2, 302 (1990); Erratum: ibid. B5, April issue (1993), in press.ADSGoogle Scholar
  22. (22).
    V. S. Krivitskii, Yu. M. Pryadko and V. N. Tsytovich, Sov. J. Plasma Physics 16, 464 (1990).Google Scholar
  23. (23).
    M. Nambu, S. N. Sarma and K. K. Sarma, Phys. Rev. 45A, 7456 (1992).ADSGoogle Scholar
  24. (24).
    M. E. Gedalin, J. G. Lominadze, L. Stenflo and V. N. Tsytovich, Astrophys. Space Science 108, 393 (1985).ADSCrossRefGoogle Scholar
  25. (25).
    M. Nambu, Space Sci. Review 44, 357 (1986).ADSGoogle Scholar
  26. (26).
    Y. Amagishi, J. Phys. Soc. Japan 29, 764 (1970).ADSCrossRefGoogle Scholar
  27. (27).
    H. Fujiyama and M. Nambu, Phys. Letters 105A, 295 (1984).ADSGoogle Scholar
  28. (28).
    R. W. Boswell, Geophys. Res. Letters 11, 1015 (1984).ADSCrossRefGoogle Scholar
  29. (29).
    I. Mori and K. Ohya, Phys. Rev. Letters 59, 1825 (1987).ADSCrossRefGoogle Scholar
  30. (30).
    K. H. Finken and U. Ackermann, Physica 113B, 135 (1982).Google Scholar
  31. (31).
    I. H. Hutchinson and S. E. Kissel, Phys. Fluids 26, 310 (1983).ADSCrossRefGoogle Scholar
  32. (32).
    N. Cornilleau-Wehlin, J. Geophys. Res. 86, 1365 (1981).ADSCrossRefGoogle Scholar
  33. (33).
    L. A. Reinleitner, D. A. Gurnett, and T. E. Eastman, J. Geophys. Res. 88. 3079 (1983).ADSCrossRefGoogle Scholar
  34. (34).
    C. F. Kennel, H. E. Petschek, F. V. Coroniti, R. W. Fredricks, D. A. Gurnett, and E. J. Smith, Geophys. Res. Letters 7. 129 (1980).ADSCrossRefGoogle Scholar
  35. (35).
    R. Bingham, J. J. Su, J. M. Dawson. K. G. McClements, and D. S. Spicer, Preprint “Lower Hybrid Resonance Acceleration of Electrons and Ions In Solar Flares and the Associated Microwave Emissions”, Fusion Theory Division, Culham Laboratory PPN 92/10.Google Scholar
  36. (36).
    S. Bujarbarua, S. N. Sarma, and M. Nambu, Phys. Rev. 29A. 2171 (1984).ADSGoogle Scholar
  37. (37).
    S. N. Sarma, K. K. Sarma, and M. Nambu, J. Plasma Phys. 46, 331 (1991).ADSCrossRefGoogle Scholar
  38. (38).
    M. Nambu, J. Phys. Soc. Japan 56, 544 (1987).ADSCrossRefGoogle Scholar
  39. (39).
    D. W. Ross, Phys. Fluids 12, 613 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Mitsuhiro Nambu
    • 1
  1. 1.Department of PhysicsCollege of General Education Kyushu UniversityRopponmatsu, FukuokaJapan

Personalised recommendations