Germanium X-Ray Detectors

  • R. A. Sareen


Methods of employing semiconductor materials to detect electromagnetic radiation, charged particles, and neutrons have been developed extensively during the last forty years. (1) Within this period, a particular semiconductor has been chosen for a specific application following extensive research and development. For example, the lithium drifted silicon (Si(Li)) detector(2) of a particular shape and size has been the preferred choice for detecting low energy x rays and has helped to promote the science of microanalysis on electron microscopes and other excitation sources. These include x-ray excited fluorescence systems, diffractometers, synchrotrons and particle accelerators. Within the last five years (3,4) it has become clear that germanium is capable of rivaling silicon with certain advantages. This presentation reviews the development of these germanium detectors as devices for high resolution energy dispersive x-ray spectroscopy and compares their performance with silicon.


Germanium Detector Charge Collection Fano Factor Entrance Window Input Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Knoll,Radiation Detection and Measurement, 2nd Ed., John Wiley and Sons, New York (1989).Google Scholar
  2. 2.
    E. M. Pell, J. Appl. Phys. 31, 291 (1960).CrossRefGoogle Scholar
  3. 3.
    C.E. Cox, B. C. Lowe, and R. A. Sareen,IEEE Trans. Nucl. Sci. 35, 28 (1988).CrossRefGoogle Scholar
  4. 4.
    J. J. McCarthy, M. A. Ales, and D. J. McMillan, in:Proceedings of the Xth International Congress for Electron Microscopy(1988).Google Scholar
  5. 5.
    R. N. Hall and T. J. Soltys, IEEE Trans. Nucl. Sci. NS-18 160 (1971).CrossRefGoogle Scholar
  6. 6.
    Hobokenin, Belgium, and Tennelec, Oak Ridge, Tennessee, Manufacturers of germanium.Google Scholar
  7. 7.
    P. Luke, et al. IEEE Trans Nacl Sci 3993 1992Google Scholar
  8. 8.
    P. Twin, J. Sharpey-Schafer, P. Nolan, J. Simpson, and P. Butler, Davesbury Report, University of Liverpool, Chesire, England.Google Scholar
  9. 9.
    T. Sashashibi, Nucl. Instrum. Methods A322, 551 (1992).Google Scholar
  10. 10.
    G. White,et al., Proceedings of Second ISPRA Nuclear Electronics Symposium. Commission of the European Community, Stresa, Italy, p. 153 (1975).Google Scholar
  11. 11.
    M. Lund and R. Perkins, MOXTEK, Provo, Utah.Google Scholar
  12. 12.
    T. Nashashibi and G. White, Internal Report, Link Analytical, Halifax Road, High Wycombe, England (1991).Google Scholar
  13. 13.
    S. Ramo, Proc. Inst. Radio Eng. 27, 584 (1939).Google Scholar
  14. 14.
    Cavalleri, Fabri, Gatti, and Svelto,Nucl. Instrum. Methods 21, 177 (1963).CrossRefGoogle Scholar
  15. 15.
    F. S.Goulding, IEEE Trans. Nucl. Sci. 1, 493 (1972).Google Scholar
  16. 16.
    G. Llacer, LBL Report 5585, Berkeley, California (1976).Google Scholar
  17. 17.
    A.Georgiev, Nucl. Instrum. Methods 1 (1992).Google Scholar
  18. 18.
    U.Fano, Phys. Rev. 70, 44 (1946); 72, 26 (1947)Google Scholar
  19. 19.
    R. Zulliger, IEEE Trans. Nucl. Sci. NS-17, 187 (1970).CrossRefGoogle Scholar
  20. 20.
    V. Radeka,Nucleonics 23, 53 (1965).Google Scholar
  21. 21.
    Interfet, Dallas, Texas, manufacturer of FETs.Google Scholar
  22. 22.
    F. S. Goulding, UCRL Report 16231, UCRL, Berkeley, California, 293 (1965).Google Scholar
  23. 23.
    R S. Goulding, et al., IEEE Trans. Nucl. Sci. NS-19 (1972).Google Scholar
  24. 24.
    N. Madden et al., IEEE Trans. Nucl. Sci. 1 (1992).Google Scholar
  25. 25.
    Freck and J. Wakefield,Nature 193, 669 (1962).CrossRefGoogle Scholar
  26. 26.
    R. Tavendale, IEEE Trans. Nucl. Sci. NS-11, 191 (1964).Google Scholar
  27. 27.
    R. Trammell et al., Nucl. Instrum. Methods 176, 595 (1980).CrossRefGoogle Scholar
  28. 28.
    M. Slapa et al., Nucl. Instrum. Methods196, 575 (1982).CrossRefGoogle Scholar
  29. 29.
    K. Kalinka and I. Taniguchi,Nucl. Instrum. Methods B75, 91 (1993).Google Scholar
  30. 30.
    D. Joy Rev. Sci. Instrum. 59, 83 (1985).Google Scholar
  31. 31.
    J. L. Campbell and J. X. Wang,X-Ray Spectrom. 20, 191 (1991).CrossRefGoogle Scholar
  32. 32.
    Heckel and Scholz,X-Ray Spectrom. 16, 181 (1987).CrossRefGoogle Scholar
  33. 33.
    Inagaki, Shima, and Maezawa, Nucl. Instrum. Methods B27, 353 (1987).Google Scholar
  34. 34.
    Bloomfield, Love, and Scott, X-Ray Spectrom. 13, 69 (1984).Google Scholar
  35. 35.
    Reed and Ware,J. Phys. E5, 148 (1972).Google Scholar
  36. 36.
    White,IEEE Trans. Nucl. Sci. 35, 125 (1988).CrossRefGoogle Scholar
  37. 37.
    Lowe and Tyrell, Patent owned by Link Analytical, Halifax Road, High Wycombe, UK (1988).Google Scholar
  38. 38.
    P. Statham and T. Nashashibi, Microbeam Analysis(1988).Google Scholar

Suggestion Further Reading

  1. 1.
    References 1.Google Scholar
  2. 2.
    Delaney and Finch, Radiation Detectors, Clarendon Press, Oxford, England (1992).Google Scholar
  3. 3.
    Debertin and Helmer, Gamma Ray and X-Ray Spectrometry with Semiconductor Detectors, Elsevier, North Holland, Amsterdam (1988).Google Scholar
  4. 4.
    Tsoulfanides, Measurement and Detection of Radiation, Hemisphere Publication Corporation, Washington (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. A. Sareen
    • 1
  1. 1.Schuster LaboratoriesThe UniversityManchesterUK

Personalised recommendations