Skip to main content

A Study of Systematic Errors in Multiple Linear Regression Peak Fitting Using Generated Spectra

  • Chapter
X-Ray Spectrometry in Electron Beam Instruments

Abstract

Quantitative analysis using electron, x-ray, or ion beam excited x rays depends on accurate measurement of characteristic peak intensities in the spectrum. Multiple-linear-least-squares (ML) procedures are routinely used to extract peak areas even from spectra with severe peak overlaps. In an ML fitting procedure, a factor is found that scales a reference distribution for each peak or family of peaks from each element of interest contributing to the specimen spectrum. The area of the reference is known, so the fitting factor may be used to calculate the area of the fitted peak. Most conveniently, the reference distributions are segments of spectra from pure element specimens and thus are assumed to include all spectrum features associated with a particular family of lines as well as any spectral artifacts peculiar to the spectrometer.(l) For electron excited x rays, some implementations of ML peak fitting utilize reference distributions that are background-free.(2,3) Others fit distributions that include the continuum background and assume that a correction can be made for the reference background contribution in the fitted area.(4) Continuum can be suppressed before the fitting procedure by digitally filtering both the spectrum and references with a “top-hat” filter of dimensions chosen to preferentially pass only higher frequency features.(5,6) For spectra from bulk specimens, these high frequency features include not only characteristic peaks but also abrupt decreases in continuum due to absorption edges that may introduce an error in calculating fitted peak areas. In fact, as pointed out by Statham,(6) any region of the continuum a residual in the filtered spectrum that will introduce an error in the fitted area of a peak in that region. For example, Kitazawa et al. demonstrated a systematic error for Na in spectra from a thin specimen acquired with a beryllium window detector. This error arises from the change in curvature of the continuum near the Na Ka energy due to strong absorption of the low energy x rays by the detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. H. Schamber, in: Proceedings of the 8th National Conference on Electron Probe Analysis,Louisiana, Paper 85 (1973).

    Google Scholar 

  2. P. J. Statham, X-Ray Spectrom. 5, 16 (1976).

    Article  CAS  Google Scholar 

  3. DTSA (SRD-38), available from: National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  4. H. Schuman, A. V. Somlyo, and A. P. Somlyo, Ultramicroscopy 1, 317 (1976).

    Article  Google Scholar 

  5. F. H. Schamber, in: X-Ray Fluorescence Analysis of Environmental Samples (T. G. Dzubay, ed.) Ann Arbor, MI, p. 241 (1977).

    Google Scholar 

  6. P. J. Statham, Anal. Chem. 49, 2149 (1977).

    Article  CAS  Google Scholar 

  7. T. Kitazawa, H. Schuman, and A. P. Somlyo, Ultramicroscopy 11, 251 (1983).

    Article  CAS  Google Scholar 

  8. C. E. Fiori, and C. R. Swyt, in: Microbeam Analysis-1989 (R. Linton, ed.) San Francisco, p. 236 (1989).

    Google Scholar 

  9. K. E. J. Heinrich, in: Proceedings of the 11th International Congress on X-ray Optics and Microanalysis (J. D. Brown and R. H. Packwood, eds.) Graphics Services, University of Western Ontario, Ontario, p. 67 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swyt, C.R. (1995). A Study of Systematic Errors in Multiple Linear Regression Peak Fitting Using Generated Spectra. In: Williams, D.B., Goldstein, J.I., Newbury, D.E. (eds) X-Ray Spectrometry in Electron Beam Instruments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1825-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1825-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5738-4

  • Online ISBN: 978-1-4615-1825-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics