Vaccine Design pp 495-524 | Cite as

Monophosphoryl Lipid A as an Adjuvant

Past Experiences and New Directions
  • J. Terry Ulrich
  • Kent R. Myers
Part of the Pharmaceutical Biotechnology book series (PBIO, volume 6)

Abstract

The increasing threat to the human population posed by new or resurgent infectious diseases, coupled with an alarming rise in the incidence of antibiotic-resistant microbes, has created a tremendous need for new vaccines. A critical element in the development of these new vaccines is the ability, via adjuvants, to potentiate and focus the immune response to the vaccine in beneficial ways so that optimal protection can be achieved. One promising candidate adjuvant in this regard is MPL® immunostimulant, a monophosphoryl lipid A preparation derived from the lipopolysaccharide (LPS) of Salmonella minnesota R595. MPL® is being considered as an adjuvant for a number of human vaccines, and experience to date has shown that it is safe, well tolerated, and able to provide a heightened immune response to coadministered antigens. In this chapter, various topics related to the preparation, formulation, and use of MPL® as an adjuvant will be discussed. In addition, our current knowledge of the mechanisms of action of MPL® will be reviewed.

Keywords

Fatigue Surfactant Hydrolysis Toxicity Tuberculosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, A., and Dixon, F. J., 1989, Immunomodifiers in vaccines, Adv. Vet. Sci. Comp. Med. 33:301–343.PubMedGoogle Scholar
  2. Alving, C. R., 1991, Liposomes as carriers of antigens and adjuvants, J. Immunol. Methods 140:1–13.PubMedCrossRefGoogle Scholar
  3. Alving, C. R., 1992, Lipid A and liposomes containing lipid A as adjuvants for vaccines, in: Bacterial Endotoxic Lipopolysaccharides, Vol. 2 (J. L. Ryan and D. C. Morrison, eds.), CRC Press, Boca Raton, pp. 430–443.Google Scholar
  4. Baker, P. J., 1990, Regulation of magnitude of antibody response to bacterial Polysaccharide antigens by thymus-derived lymphocytes, Infect. Immun. 58:3465–3468.PubMedGoogle Scholar
  5. Baker, P. J., and Prescott, B., 1979, Regulation of the antibody response to pneumococcal Polysaccharides by thymus-derived (T) cells: Mode of action of suppressor and amplifier T cells, in: Immunology of Bacterial Polysaccharides (J. A. Rudbach and P. J. Baker, eds.), Elsevier/North-Holland, Amsterdam, pp. 67–105.Google Scholar
  6. Baker, P. J., Hiernaux, J. R., Fauntleroy, M. B., Stashak, P. W., Prescott, B., Cantrell, J. L., and Rudbach, J. A., 1988a, Inactivation of suppressor T-cell activity by nontoxic monophosphoryl lipid A, Infect. Immun. 56:1076–1083.PubMedGoogle Scholar
  7. Baker, P. J., Hiernaux, J. R., Fauntleroy, M. B., Prescott, B., Cantrell, J. L., and Rudbach, J. A., 1988b, Ability of monophosphoryl lipid A to augment the antibody response of young mice, Infect. Immun. 56:3064–3066.PubMedGoogle Scholar
  8. Baker, P. J., Haslov, K. R., Fauntleroy, M. B., Stashak, P. W., Myers, K., and Ulrich, J. T., 1990, Enrichment of suppressor T cells by means of binding to monophosphoryl lipid A, Infect. Immun. 58:726–731.PubMedGoogle Scholar
  9. Batley, M., Packer, N. H., and Redmond, J. W., 1985, Analytical studies of lipopolysaccharide and its derivatives from Salmonella minnesota R595. I. Phosphorous magnetic resonance spectra, Biochim. Biophys. Acta 821:179–194.CrossRefGoogle Scholar
  10. Bessler, W. G., and Jung, G., 1992, Synthetic lipopeptides as novel adjuvants, Res. Immunol. 5:548–553.CrossRefGoogle Scholar
  11. Brachman, P. S., Gold, H., Plotkin, S. A., Fekety, F. R., Werrin, M., and Ingraham, N. R., 1962, Field evaluation of a human anthrax vaccine, Am. J. Public Health 52:632–645.CrossRefGoogle Scholar
  12. Brozek, K. A., and Raetz, C. R. H., 1990, Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate, J. Biol. Chem. 265:15410–15417.PubMedGoogle Scholar
  13. Caroff, M., Deprun, C., Karibian, D., and Szabó, L., 1991, Analysis of unmodified endotoxin preparations by Cf plasma desorption mass spectrometry. Determination of molecular masses of the constituent native lipopolysaccharides, J. Biol. Chem. 266:18543–18549.PubMedGoogle Scholar
  14. Carozzi, S., Salit, M., Cantaluppi, A., Nasini, M. G., Barocci, S., Cantarella, S., and Lamperi, S., 1989, Effect of monophosphoryl lipid A on the in vitro function of peritoneal leukocytes from uremic patients on continuous ambulatory peritoneal dialysis, J. Clin. Microbiol. 27:1748–1753.PubMedGoogle Scholar
  15. Chase, J. J., Kubey, W., Dulek, M. H., Holmes, C. J., Salit, M. G., Pearson, F. C., III, and Ribi, E., 1986, Effect of monophosphoryl lipid A on host resistance to bacterial infection, Infect. Immun. 53:711–712.PubMedGoogle Scholar
  16. Chen, C. H., Johnson, A. G., Kasai, N., Key, B. A., Levin, J., and Nowotny, A., 1973, Heterogeneity and biological activity of endotoxic glycolipid from Salmonella minnesota R595, J. Infect. Dis. 128(Suppl):43–51.PubMedCrossRefGoogle Scholar
  17. Codington, J. F., Linsley, K. B., and Jeanlot, R. W., 1975, Immunochemical and chemical investigations of the structure of glycoprotein fragments obtained from epiglycanin, a glycoprotein at the surface of the TA3-Ha cancer cell, Carbohydr. Res. 40:171–182.PubMedCrossRefGoogle Scholar
  18. Collins, D. S., Findlay, K., and Harding, C. V., 1992, Processing of exogenous liposome-encapsulated antigen in vivo generates class I MHC-restricted T cell responses, J. Immunol. 148:3336–3341.PubMedGoogle Scholar
  19. Deres, K., Schild, H., Wiesmuller, K.-H., Jung, G., and Rammensee, H. G., 1989, In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine, Nature 342:561–564.PubMedCrossRefGoogle Scholar
  20. Devi, S. J. N., Schneerson, R., Egan, W., Ulrich, J. T., Bryla, D., Robbins, J. B., and Bennett, J. E., 1991, Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: Synthesis, characterization, and immunogenicity, Infect. Immun. 59:3700–3707.PubMedGoogle Scholar
  21. DeWilde, M., 1994, Preclinical and clinical experience with MPL and QS21 adjuvanted recombinant subunit vaccines, in: Novel Vaccine Strategies, IBC Conference, February, Bethesda, Maryland.Google Scholar
  22. Dijkstra, J., Mellors, J. W., Ryan, J. L., and Szoka, F. C., 1987, Modulation of the biological activity of bacterial endotoxin by incorporation into liposomes, J. Immunol. 138:2663–2670.PubMedGoogle Scholar
  23. Domer, J. E., Garner, R. E., and Befidi-Mengue, R. N., 1989, Mannan as an antigen in cell-mediated immunity (CMI) assays and as a modulator of mannan-specific CMI, Infect. Immun. 57:693–700.PubMedGoogle Scholar
  24. Domer, J. E., Human, L. G., Andersen, G. B., Rudbach, J. A., and Asherson, G. L., 1993, Abrogation of suppression of delayed hypersensitivity induced by Candida albicans-derived mannan by treatment with monophosphoryl lipid A, Infect. Immun. 61:2122–2130.PubMedGoogle Scholar
  25. Edelman, R., 1992, An update on vaccine adjuvants in clinical trial, AIDS Res. Hum. Retroviruses 8:1409–1411.PubMedGoogle Scholar
  26. Elliott, G. T., McLeod, R. A., Perez, J., and Von Eschen, K. B., 1993, Interim results of a Phase II multicenter clinical trial evaluating the activity of a therapeutic allogeneic melanoma vaccine (Theraccine) in the treatment of disseminated malignant melanoma, Semin. Surg. Oncol. 9:264–272.PubMedGoogle Scholar
  27. Engelhardt, R., Mackensen, A., Galanos, C., and Andreesen, R., 1990, Biological response to intravenously administered endotoxin in patients with advanced cancer, J. Biol. Response Mod. 9:480–491.PubMedGoogle Scholar
  28. Esquivel, F., Taylor, C. E., and Baker, P. J., 1991, Differential sensitivity of CD8+ suppressor and cytotoxic T lymphocyte activity to bacterial monophosphoryl lipid A, Infect. Immun. 59:2994–2998.PubMedGoogle Scholar
  29. Finkelman, F. D., Holmes, J., Katona, I. M., Urban, J. F., Jr., Beckmann, M. P., Park, L. S., Schooley, K. A., Coffman, R. L., Mosmann, T. R., and Paul, W. E., 1990, Lymphokine control of in vivo immunoglobulin isotype selection, Annu. Rev. Immunol. 8:303–333.PubMedCrossRefGoogle Scholar
  30. Florence, A. T., and Whitehill, D., 1982, The formulation and stability of multiple emulsions, Int. J. Pharm. 11:277–308.CrossRefGoogle Scholar
  31. Friede, M., Muller, S., Briand, J.-P., Van Regenmortel, M. H. V., and Schuber, F., 1993, Induction of immune response against a short synthetic peptide antigen coupled to small neutral liposomes containing monophosphoryl lipid A, Mol. Immunol. 30:539–547.PubMedCrossRefGoogle Scholar
  32. Fries, L. F., Gordon, D. M., Richards, R. L., Egan, J. E., Hollingdale, M. R., Gross, M., Silverman, C., and Alving, C. R., 1992, Liposomal malaria vaccine in humans: A safe and potent adjuvant strategy, Proc. Natl. Acad. Sci. USA 89:358–362.PubMedCrossRefGoogle Scholar
  33. Fung, P. Y. S., and Longenecker, B. M., 1991, Specific immunosuppressive activity of epiglycanin, a mucin-like glycoprotein secreted by a murine mammary adenocarcinoma (TA3-HA), Cancer Res. 51:1170–1176.PubMedGoogle Scholar
  34. Fung, P. Y. S., Madej, M., Koganty, R. R., and Longenecker, B. M., 1990, Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate, Cancer Res. 50:4308–4314.PubMedGoogle Scholar
  35. Garcon, N. M. J., and Six, H. R., 1991, Universal vaccine carrier. Liposomes that provide T-dependent help to weak antigens, J. Immunol. 146:3697–3702.PubMedGoogle Scholar
  36. Garg, M., and Subbarao, B., 1992, Immune responses of systemic and mucosal lymphoid organs to Pnu-Imune vaccine as a function of age and the efficacy of monophosphoryl lipid A as an adjuvant, Infect. Immun. 60:2329–2336.PubMedGoogle Scholar
  37. Good, M. F., Maloy, W. L., Lunde, M. N., Margalit, H., Corvette, J. L., Smith, G. L., Moss, B., Miller, L. H., and Berzofsky, J. A., 1987, Construction of synthetic immunogen: Use of new T-helper epitope on malaria circumsporozoite protein, Science 235:1059–1062.PubMedCrossRefGoogle Scholar
  38. Gregoriadis, G., 1990, Immunological adjuvants: A role for liposomes, Immunol. Today 11:89–97.PubMedCrossRefGoogle Scholar
  39. Griffioen, A. W., Rijkers, G. T., Toebes, E. A. H., and Zegers, B. J. M., 1991, The human in vitro anti-type 4 pneumococcal polysaccharide antibody response is regulated by suppressor T cells, Scand. J. Immunol. 34:229–236.PubMedCrossRefGoogle Scholar
  40. Griffioen, A. W., Toebes, E. A., Rijkers, G. T., Claas, F. H., Datema, G., and Zegers, B. J. M., 1992, The amplifier role of T cells in the human in vitro B cell response to type 4 pneumococcal polysaccharide, Immunol. Lett. 32:265–272.PubMedCrossRefGoogle Scholar
  41. Gustafson, G. L., and Rhodes, M. J., 1992a, A rationale for the prophylactic use of monophosphoryl lipid A in sepsis and septic shock, Biochem. Biophys. Res. Commun. 182:269–275.PubMedCrossRefGoogle Scholar
  42. Gustafson, G. L., and Rhodes, M. J., 1992b, Bacterial cell wall products as adjuvants: Early interferon gamma as a marker for adjuvants that enhance protective immunity, Res. Immunol. 143:483–488.PubMedCrossRefGoogle Scholar
  43. Gustafson, G. L., and Rhodes, M. J., 1994, Effects of tumor necrosis factor and dexamethasone on the regulation of interferon-γ induction by monophosphoryl lipid A, J. Immunother. 15:129–133.CrossRefGoogle Scholar
  44. Hadjipetrou-Kourounakis, L., and Moller, E., 1984, Adjuvants influence the immunoglobin subclass distribution of immune responses in vivo, Scand. J. Immunol. 19:219–225.PubMedCrossRefGoogle Scholar
  45. Havell, E. A., 1989, Evidence that tumor necrosis factor has an important role in antibacterial resistance, J. Immunol. 143:2894–2899.PubMedGoogle Scholar
  46. Hocart, M. J., MacKenzie, J. S., and Stewart, G. A., 1989, The immunoglobulin G subclass responses of mice to influenza A virus: The effect of mouse strain, and the neutralizing abilities of individual protein A-purified subclass antibodies, J. Gen. Virol. 70:2439–2448.PubMedCrossRefGoogle Scholar
  47. Hunsmann, G., Schneider, J., and Schulz, A., 1981, Immunoprevention of Friend virus-induced erythroleukemia by vaccination with viral envelope glycoprotein complexes, Virology 113:602–612.PubMedCrossRefGoogle Scholar
  48. Ishihara, C., Miyazawa, M., Nishio, J., Azuma, I., and Chesebro, B., 1992, Use of low toxicity adjuvants and killed virus to induce protective immunity against the Friend murine leukaemia retrovirus-induced disease, Vaccine 10:353–356.PubMedCrossRefGoogle Scholar
  49. Ivins, B. E., Ezzell, J. W., Jr., Jemski, J., Hedlund, K. W., Ristroph, J. D., and Leppla, S. H., 1986, Immunization studies with attenuated strains of Bacillus anthracis, Infect. Immun. 52:454–458.PubMedGoogle Scholar
  50. Ivins, B. E., Welkos, S. L., Little, S. F., Crumine, M. H., and Nelson, G. O., 1992, Immunization against anthrax with Bacillus anthracis protective antigen combined with adjuvants, Infect. Immun. 60:662–668.PubMedGoogle Scholar
  51. Ivins, B. E., Fellows, P. E, Welkos, S. L., and Pitt, M. L., 1993, Experimental anthrax vaccines: Efficacy studies in guinea pigs, Abstr. E-104, Am. Soc. Microbiol. Annu. Meet., May, p. 160.Google Scholar
  52. Izui, S., Eisenberg, R. A., and Dixon, F. J., 1981, Subclass-restricted IgG polyclonal antibody production in mice injected with lipid A-rich lipopolysaccharides, J. Exp. Med. 153:324–338.PubMedCrossRefGoogle Scholar
  53. Johnson, A. G., 1964, Adjuvant action of bacterial endotoxins on the primary antibody response, in: Bacterial Endotoxins (M. Landy and W. Braun, eds.), Rutgers University Press, New Brunswick, pp. 252–262.Google Scholar
  54. Johnson, A. G., Gains, S., and Landy, M., 1956, Studies on the O antigen of Salmonella typhosa. V. Enhancement of antibody responses to protein antigens by the purified lipopolysaccharide, J. Exp. Med. 103:225–246.PubMedCrossRefGoogle Scholar
  55. Kaufmann, S. H. E., Vath, U., Thole, J. E. R., Van Embden, J. D. A., and Emmrich, F., 1987, Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-KDa protein, Eur. J. Immunol. 17:351–357.PubMedCrossRefGoogle Scholar
  56. Keane, W. F., and Peterson, P. K., 1984, Host defense mechanisms of peritoneal cavity and continuous ambulatory peritoneal dialysis, Peritoneal Dial. Bull. 4:122–127.Google Scholar
  57. Kenney, J. S., Hughes, B. W., Masada, M. P., and Allison, A. C., 1989, Influence of adjuvants on the quantity, affinity, isotype, and epitope specificity of murine antibodies, J. Immunol. Methods 121:157–166.PubMedCrossRefGoogle Scholar
  58. Klein, J. O., 1981, The epidemiology of pneumococcal disease in infants and children, Rev. Infect. Dis. 3:246–253.PubMedCrossRefGoogle Scholar
  59. Kotani, S., and Takada, H., 1989, Structural requirements of lipid A for endotoxicity and other biological activities — An overview, Crit. Rev. Microbiol. 16:477–523.PubMedCrossRefGoogle Scholar
  60. Lamperi, S., Carozzi, S., Icardi, A., and Nasini, M. G., 1985, Peritoneal membrane defense mechanism in CAPD, Trans. Am. Soc. Artif. Intern. Organs 31:33–37.PubMedGoogle Scholar
  61. Leroux-Roels, G., Moreux, E., Verhasselt, B., Biernaux, S., Brulein, V., Francotte, M., Pala, P., Slaoui, M., and Vandepapeliere, P., 1993, Immunogenicity and reactogenicity of a recombinant HSV-2 glycoprotein D vaccine with or without monophosphoryl lipid A in HSV seronegative and seropositive subjects, Abstr. 1209, 33rd Intersci. Conf. Antimicrob. Agents Chemother., p. 341.Google Scholar
  62. MacLean, G. D., Bowen-Yacyshyn, M. B., Samuel, J., Meikle, A., Stuart, G., Nation, J., Poppema, S., Jerry, M., Koganty, R., Wong, T., and Longenecker, B. M., 1992, Active immunization of human ovarian cancer patients against a common carcinoma (Thomsen-Friedenreich) determinant using a synthetic carbohydrate antigen, J. Immunother. 11:292–305.PubMedCrossRefGoogle Scholar
  63. MacLean, G. D., Reddish, M., Koganty, R. R., Wong, T., Gandhi, S., Smolenski, M., Samuel, J., Nabholtz, J. M., and Longenecker, B. M., 1993, Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant, Cancer Immunol. Immunother. 36:215–222.PubMedCrossRefGoogle Scholar
  64. Marr, A. G., and Ingraham, J. L., 1962, Effect of temperature on the composition of fatty acids in Escherichia coli, J. Bacteriol. 84:1260–1267.PubMedGoogle Scholar
  65. Martich, G. D., Danner, R. L., Ceska, M., and Suffredini, A. F, 1991, Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: The effect of antiinflammatory agents, J. Exp. Med. 173:1021–1024.PubMedCrossRefGoogle Scholar
  66. Masihi, K. N., Lange, W., Johnson, A. G., and Ribi, E., 1986, Enhancement of chemiluminescence and phagocytic activities by nontoxic and toxic forms of lipid A, J. Biol. Response Mod. 5:462–469.PubMedGoogle Scholar
  67. Michie, H. R., Manogue, K. R., Spriggs, D. R., Revhaug, A., O’Dwyer, S., Dinarello, C. A., Cerami, A., Wolff, S. M., and Wilmore, D. W., 1988, Detection of circulating tumor necrosis factor after endotoxin administration, N. Engl. J. Med. 318:1481–1486.PubMedCrossRefGoogle Scholar
  68. Mitchell, M. S., Kan-Mitchell, J., Kempf, R. A., Hard, W., Shau, H. Y., and Lind, S., 1988, Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant, Cancer Res. 48:5883–5893.PubMedGoogle Scholar
  69. Mitchell, M. S., Harel, W., Kempf, R. A., Hu, E., Kan-Mitchell, J., Boswell, W. D., Dean, G., and Stevenson, L., 1990, Active-specific immunotherapy for melanoma, J. Clin. Oncol. 8:856–869.PubMedGoogle Scholar
  70. Mosier, D. E., and Subbarao, B., 1982, Thymus-independent antigens: Complexity of B lymphocyte activation revealed, Immunol. Today 3:217–222.CrossRefGoogle Scholar
  71. Mosier, D. E., Zaldivar, N. M., Goldings, E., Mond, J., Scher, I., and Paul, W. E., 1977, Formation of antibody in the newborn mouse: Study of T-cell-independent antibody response, J. Infect. Dis. 136 (Suppl.):S14–S19.PubMedCrossRefGoogle Scholar
  72. Munoz, J., 1964, Effects of bacteria and bacterial products on antibody response, in: Advances in Immunology (F. J. Dixon and H. G. Kunkel, eds.), Academic Press, New York, pp. 397–440.Google Scholar
  73. Myers, K. R., and Snyder, D. S., 1992, Detailed composition of natural MPL®-immunostimulant, J. Cell. Biochem., Abstr. Suppl. 16C, abstract CB112.Google Scholar
  74. Myers, K. R., and Ulrich, J. T., 1993, Effective use of monophosphoryl lipid A as an adjuvant, in: Novel Vaccine Strategies, IBC Conference, October, Bethesda.Google Scholar
  75. Myers, K. R., Truchot, A. T., Ward, J., Hudson, Y., and Ulrich, J. T., 1990, A critical determinant of lipid A endotoxic activity, in: Cellular and Molecular Aspects of Endotoxin Reactions (A. Nowotny, J. J. Spitzer, and E. J. Ziegler, eds.), Elsevier, Amsterdam, pp. 145–156.Google Scholar
  76. Myers, K. R., Ulrich, J. T., Qureshi, N., Takayama, K., Wang, R., Chen, L., Emary, W. B., and Cotter, R. J., 1992, Preparation and characterization of biologically active 6′-O-(6-aminocaproyl)-4′-O-monophosphoryl lipid A and its conjugated derivative, Bioconjugate Chem. 3:540–548.CrossRefGoogle Scholar
  77. Olander, R.-M., Muotiala, A., Himanen, J.-P., Karvonen, M., Airaksinen, U., and Runeberg-Nyman, K., 1991, Immunogenicity and protective efficacy of pertussis toxin subunit S1 produced by Bacillus subtilis, Microb. Pathog. 10:159–164.PubMedCrossRefGoogle Scholar
  78. Peltola, H., Kayhty, H., Virtanen, M., and Makela, P. H., 1984, Prevention of Haemophilus influenzae type B bacteremic infections with the capsular Polysaccharide vaccine, N. Engl. J. Med. 310:1561–1566.PubMedCrossRefGoogle Scholar
  79. Pohle, C., Rohde-Schultz, B., and Masihi, K. N., 1990, Effects of synthetic HIV peptides, cytokines, and monophosphoryl lipid A on chemiluminescence response, in: Immunotherapeutic Disease (K. N. Masihi and W. Lange, eds.), Springer-Verlag, Berlin, pp. 143–149.CrossRefGoogle Scholar
  80. Puziss, M., Manning, L. C., Lynch, L. W., Barclay, E., Abelow, I., and Wright, G. G., 1963, Large-scale production of protective antigen of Bacillus anthracis anaerobic cultures, Appl. Microbiol. 11:330–334.PubMedGoogle Scholar
  81. Qureshi, N., Takayama, K., and Ribi, E., 1982, Purification and structural determination of nontoxic lipid A obtained from lipopolysaccharide of Salmonella typhimurium, J. Biol. Chem. 257:11808–11815.PubMedGoogle Scholar
  82. Qureshi, N., Mascagni, P., Ribi, E., and Takayama, K., 1985, Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595: Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination, J. Biol. Chem. 260:5271–5278.PubMedGoogle Scholar
  83. Qureshi, N., Cotter, R. J., and Takayama, K., 1986, Application of fast atom bombardment mass spectrometry and nuclear magnetic resonance on the structural analysis of purified lipid A, J. Microbiol. Methods 5:65–77.CrossRefGoogle Scholar
  84. Rawlings, D. J., and Kaslow, D. C., 1992, Adjuvant-dependent immune response to malarial transmissionblocking vaccine candidate antigens, J. Exp. Med. 176:1483–1487.PubMedCrossRefGoogle Scholar
  85. Ribi, E., 1984, Beneficial modification of the endotoxin molecule, J. Biol. Response Mod. 3:1–9.PubMedGoogle Scholar
  86. Ribi, E., 1986, Structure-function relationship of bacterial adjuvants, in: Advances in Carriers and Adjuvants for Veterinary Biologics (R. M. Nervig, P. M. Gough, M. L. Kaeberle, and C. A. Whetstone, eds.), Iowa State University Press, Ames, pp. 35–49.Google Scholar
  87. Ribi, E., Parker, R., Strain, S. M., Mizuno, Y., Nowotny, A., Von Eschen, K. B., Cantrell, J. L., McLaughlin, C. A., Hwang, K. M., and Goren, M. B., 1979, Peptides as requirement for immunotherapy of the guinea-pig Line 10 tumor with endotoxins, Cancer Immunol. Immunother. 7:43–58.CrossRefGoogle Scholar
  88. Ribi, E., Amano, K., Cantrell, J., Schwartzman, S., Parker, R., and Takayama, K., 1982, Preparation and antitumor activity of nontoxic lipid A, Cancer Immunol. Immunother. 12:91–96.CrossRefGoogle Scholar
  89. Ribi, E., Cantrell, J. L., Takayama, K., Ribi, H. O., Myers, K. R., and Qureshi, N., 1986, Modulation of humoral and cell-mediated immune responses by a structurally established nontoxic lipid A, in: Immunobiology and Immunopharmacology of Bacterial Endotoxins (A. Szentivanyi and H. Friedman, eds.), Plenum Press, New York, pp. 407–420.CrossRefGoogle Scholar
  90. Rickman, L. S., Gordon, D. M., Wistar, R. Jr., Krzych, U., Gross, M., Hollingdale, M. R., Egan, J. E., Chulay, J. D., and Hoffman, S. L., 1991, Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine, Lancet 337:998–1001.PubMedCrossRefGoogle Scholar
  91. Rietschel, E. T., Wollenweber, H.-W., Russa, R., Brade, H., and Zähringer, U., 1984, Concepts of the chemical structure of lipid A, Rev. Infect. Dis. 6:432–438.PubMedCrossRefGoogle Scholar
  92. Robbins, J. B., and Schneerson, R., 1990, Polysaccharides-protein conjugates: A new generation of vaccines, J. Infect. Dis. 161:821–832.PubMedCrossRefGoogle Scholar
  93. Roghmann, K. J., Tabloski, P. A., Bentley, D. W., and Schiffman, G., 1987, Immune response of elderly adults to pneumococcus: Variation by age, sex, and functional impairment, J. Gerontol. 42:265–270.PubMedCrossRefGoogle Scholar
  94. Romagnani, S., 1992, Induction of TH1 and TH2 responses: A key role for the “natural” immune response? Immunol. Today 13:379–381.PubMedCrossRefGoogle Scholar
  95. Rook, G. A., 1991, Mobilizing the appropriate T-cell subset: The immune response as taxonomist? Tubercle 72:253–254.PubMedCrossRefGoogle Scholar
  96. Rook, G. A. W., 1993, New meanings for an old word: Adjuvanticity, cytokines and T cells, Immunol. Today 14:95–96.PubMedCrossRefGoogle Scholar
  97. Rudbach, J. A., Cantrell, J. L., and Ulrich, J. T., 1988, Molecularly engineered microbial immunostimulators, in: Technological Advances in Vaccine Development (L. Lasky, ed.), Liss, New York, pp. 443–454.Google Scholar
  98. Rudbach, J. A., Cantrell, J. L., Ulrich, J. T., and Mitchell, M. S., 1990, Immunotherapy with bacterial endotoxins, in: Endotoxin (H. Friedman, T. W. Klein, M. Nakano, and A. Nowotny, eds.), Plenum Press, New York, pp. 665–676.Google Scholar
  99. Rudbach, J. A., Myers, K. R., Rechtman, D. J., and Ulrich, J. T., 1994, Prophylactic use of monophosphoryl lipid A in patients at risk for sepsis, in: Bacterial Endotoxins: Basic Science to Anti-Sepsis Strategies (J. Levin, S. J. H. Van Deventer, A. Sturk, and T. Van Der Poll, eds.), Wiley, New York, pp. 107–124.Google Scholar
  100. Schneerson, R., Fattom, A., Szu, S. C., Bryla, D., Ulrich, J. T., Rudbach, J. A., Schiffman, G., and Robbins, J. B., 1991, Evaluation of monophosphoryl lipid A (MPL) as an adjuvant. Enhancement of serum antibody response in mice to polysaccharide-protein conjugates by concurrent injection with MPL, J. Immunol. 147:2136–2140.PubMedGoogle Scholar
  101. Shapiro, E. D., Wald, E. R., Margolis, A. G., and Ortenzo, M. E., 1992, The decreasing incidence of Hemophilus influenza type B (Hib) disease in both Connecticut and Greater Pittsburgh, PA., Pediatr. Res. 31:100A.Google Scholar
  102. Springer, G. F., 1984, T and Tn, general carcinoma autoantigens, Science 224:1198–1206.PubMedCrossRefGoogle Scholar
  103. Takahashi, H., Takeshita, T., Morein, B., Putney, S., Germain, R. N., and Berzofsky, J. A., 1990, Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope proteins in ISCOMs, Nature 344:873–875.PubMedCrossRefGoogle Scholar
  104. Takayama, K., Ribi, E., and Cantrell, J. L., 1981, Isolation of a nontoxic lipid A fraction containing tumor regression activity, Cancer Res. 41:2654–2657.PubMedGoogle Scholar
  105. Takayama, K., Qureshi, N., Raetz, C. R. H., Ribi, E., Peterson, J., Cantrell, J. L., Pearson, F. C., Wiggins, J., and Johnson, A. G., 1984, Influence of fine structure of lipid Aon Limulus amebocyte lysate clotting and toxic activities, Infect. Immun. 45:350–355.PubMedGoogle Scholar
  106. Takayama, K., Olsen, M., Datta, P., and Hunter, R. L., 1991, Adjuvant activity of non-ionic block copolymers. V. Modulation of antibody isotype by lipopolysaccharides, lipid A, and precursors, Vaccine 9:257–265.PubMedCrossRefGoogle Scholar
  107. Thoelen, S., Van Damme, P., Meeus, A., Collard, F., Slaoui, M., and Vandepapeliere, P., 1993, Immunogenicity of a recombinant hepatitis B vaccine with monophosphoryl lipid A administered following various two-dose schedules, Abstr. 340, 33rd Intersci. Conf. Antimicrob. Agents Chemother., p. 182.Google Scholar
  108. Townsend, A., and Bodmer, H., 1989, Antigen recognition by class I-restricted T lymphocytes, Annu. Rev. Immunol. 7:601–624.PubMedCrossRefGoogle Scholar
  109. Ulrich, J. T., Masihi, K. N., and Lange, W., 1988, Mechanisms of nonspecific resistance to microbial infections induced by trehalose dimycolate (TDM) and monophosphoryl lipid A (MPL), Adv. Biosci. 68:167–178.Google Scholar
  110. Van Damme, P., Thoelen, S., Van Passchen, M., Leroux-Roels, G., Meeus, A., Slaoui, M., and Vandepapeliere, P., 1993, Safety, humoral and cellular immunity of a recombinant hepatitis B vaccine with monophosphoryl lipid A in healthy volunteers, Abstr. 667, 33rd Intersci. Conf. Antimicrob. Agents Chemother., p. 241.Google Scholar
  111. Verghese, A., and Berk, S. L., 1983, Bacterial pneumonia in the elderly, Medicine (Baltimore) 62:271–285.Google Scholar
  112. Wherry, J. C., Schreiber, R. D., and Unanue, E. R., 1991, Regulation of gamma interferon production by natural killer cells in SCID mice: Roles of tumor necrosis factor and bacterial stimuli, Infect. Immun. 59:1709–1715.PubMedGoogle Scholar
  113. Zhou, F., and Huang, L., 1993, Monophosphoryl lipid A enhances specific CTL induction by a soluble protein antigen entrapped in liposomes, Vaccine 11:1139–1144.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. Terry Ulrich
    • 1
  • Kent R. Myers
    • 1
  1. 1.Ribi ImmunoChem Research, Inc.HamiltonUSA

Personalised recommendations