Skip to main content

Nanoparticles as Adjuvants for Vaccines

  • Chapter
Vaccine Design

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 6))

Abstract

Many immunogens used in vaccine formulations, especially split (or subunit) virus preparations or proteins manufactured by genetic engineering, require the use of adjuvants to boost the immune response. Classical adjuvants include different kinds of emulsions, as well as aluminum derivatives such as aluminum hydroxide (Hem and White, 1984; and Chapter 9), aluminum phosphate (Hennessy et al., 1971), and aluminum oxide (Grafe and Kuhn, 1962a,b). Aluminum hydroxide adjuvants have been used most widely because of their reputation for safety in humans. Further, aluminum-based (“alum”) adjuvants are the only adjuvants currently included in vaccines licensed by the Food and Drug Administration (Hem and White, 1984). Despite alum’s common use, variations in alum quality frequently occur between different batches of the same aluminum hydroxide-adjuvanted vaccine. This inconsistent response is understandable in view of the structure of aluminum hydroxide (see Chapter 9). The structure and physicochemical properties of aluminum adjuvants change significantly with slight alterations in production conditions and with aging (Kreuter and Haenzel, 1978; Feldkamp et al., 1982; Nail et al., 1976a,b). With emulsions, the degree of dispersions defined as the particle size distribution of the inner-phase droplets, may vary from preparation to preparation and may also change after injection. For example, the droplet size may be decreased by frictional forces during injection into tight muscular tissues whereas injection into fatty tissues may result in a coalescence of the emulsion droplets, leading to a larger droplet (particle) size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentele, V., Berg, U. E., and Kreuter, J., 1983, Molecular weights of poly(methyl methacrylate) nanoparticles, Int. J. Pharm. 13:109–113.

    Article  Google Scholar 

  • Berg, U. E., Kreuter, J., Speiser, P. P., and Soliva, M., 1986, Herstellung und In-Vitro-Prufung von polymeren Adjuvantien fur Impfstoffe, Pharm. Ind. 48:75–79.

    CAS  Google Scholar 

  • Birrenbach, G., and Speiser, P. P., 1976, Polymerized micelles and their use as adjuvants in immunology, J. Pharm. Sci. 65:1763–1766.

    Article  PubMed  CAS  Google Scholar 

  • Cabanela, M. E., Coventry, M. B., MacCarty, C. S., and Miller, W. E., 1972, The fate of patients with methyl methacrylate cranioplasty, J. Bone Joint Surg. 54:278–281.

    PubMed  CAS  Google Scholar 

  • Charnley, J., 1970, Acrylic Cement in Orthopaedic Surgery, Livingstone, Edinburgh.

    Google Scholar 

  • Feldkamp, J. R., White, J. L., and Hem, S. L., 1982, Effect of surface charge and particle size on gel structure of aluminum hydroxycarbonate gel, J. Pharm. Sci. 71:43–46.

    Article  PubMed  CAS  Google Scholar 

  • Grafe, A., and Kuhn, R. B., 1962a, Die Potenzierung von Impfstoffen durch Al2O3-Adsorption. 1. Mitteilung: Al2O3-Polio-Impfstoff, Arzneim. Forsch. 12:33–37.

    CAS  Google Scholar 

  • Grafe, A., and Kuhn, R. B., 1962b, Die Potenzierung von Impfstoffen durch Al2O3-Adsorption. 2. Mitteilung: Al2O3-Oliomyelitis-Diphtherie-Tetanus-Impfstoffe, Arzneim. Forsch. 12:392–395.

    CAS  Google Scholar 

  • Hem, S. L., and White, J. L., 1984, Characterization of aluminum hydroxide for use as an adjuvant in parenteral vaccines, J. Parenteral Sci. Technol. 38:2–10.

    CAS  Google Scholar 

  • Hennessy, A. V., Patno, M. E., and Davenport, F. M., 1971, Effect of AIPO4 on antibody response, Proc. Soc. Exp. Biol. Med. 138:396–398.

    PubMed  CAS  Google Scholar 

  • Kreuter, J., 1983a, Evaluation of nanoparticles as drug delivery systems. I: Preparation methods, Pharm. Acta Helv. 58:196–209.

    CAS  Google Scholar 

  • Kreuter, J., 1983b, Physicochemical characterization of polyacrylic nanoparticles, Int. J. Pharm. 14:43–58.

    Article  CAS  Google Scholar 

  • Kreuter, J., 1992, Physicochemical characterization of nanoparticles and their potential for vaccine preparation, Vaccine Res. 1:93–98.

    CAS  Google Scholar 

  • Kreuter, J., and Haenzel, I., 1978, Mode of action of immunological adjuvants: Some physicochemical factors influencing the effectivity of polyacrylic adjuvants, Infect. Immun. 19:667–675.

    PubMed  CAS  Google Scholar 

  • Kreuter, J., and Liehl, E., 1978, Protection induced by inactivated influenza virus vaccines with polymethylmethacrylate adjuvants, Med. Microbiol. Immunol. 165:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., and Liehl, E., 1981, Long-term studies of microencapsulated and adsorbed influenza vaccine nanoparticles, J. Pharm. Sci. 70:367–371.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., and Speiser, P. P., 1976a, In vitro studies of poly(methyl methacrylate) adjuvants, J. Pharm. Sci. 65:1624–1627.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., and Speiser, P. P., 1976b, New adjuvants on a polymethylmethacrylate base, Infect. Immun. 13:204–210.

    PubMed  CAS  Google Scholar 

  • Kreuter, J., and Zehnder, H. J., 1978, The use of Co-γ-irradiation for the production of vaccines, Radiat. Effects 35:161–166.

    Article  CAS  Google Scholar 

  • Kreuter, J., Mauler, R., Gruschkau, H., and Speiser, P. P., 1976, The use of new polymethylmethacrylate adjuvants for split influenza vaccines, Exp. Cell Biol. 44:12–19.

    PubMed  CAS  Google Scholar 

  • Kreuter, J., Tauber, U., and Illi, V., 1979, Distribution and elimination of poly(methyl-2-14C-methacrylate) nanoparticle radioactivity after injection in rats and mice, J. Pharm. Sci. 68:1443–1447.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., Nefzger, M., Liehl, E., Czok, R., and Voges, R., 1983, Distribution and elimination of poly(methyl methacrylate) nanoparticles after subcutaneous administration to rats, J. Pharm. Sci. 72:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., Berg, U., Liehl, E., Soliva, M., and Speiser, P. P., 1986, Influence of the particle size on the adjuvant effect of particulate polymeric adjuvants, Vaccine 4:125–129.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., Berg, U., Liehl, E., Soliva, M., and Speiser, P. P., 1988, Influence of the hydrophobicity on the adjuvant effect of particulate polymeric adjuvants, Vaccine 6:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Magenheim, B., and Benita, S., 1991, Nanoparticle characterization: A comprehensive physicochemical approach, S.T.P. Pharma Sci. 1:221–241.

    CAS  Google Scholar 

  • Nail, S. L., White, J. L., and Hem, S. L., 1976a, Structure of aluminum hydroxide gel. I: Initial precipitate, J. Pharm. Sci. 65:1188–1191.

    Article  PubMed  CAS  Google Scholar 

  • Nail, S. L., White, J. L., and Hem, S. L., 1976b, Structure of aluminum hydroxide gel. II: Aging mechanism, J. Pharm. Sci. 65:1192–1195.

    Article  PubMed  CAS  Google Scholar 

  • Pyl, G., 1953, Die Prüfung von Aluminium hydroxid auf seine Eignung fur die Maul-und Klauenseuchevakzine, Arch. Exp. Veterinärmed. 7:9–17.

    CAS  Google Scholar 

  • Schindler, A., Jeffcoat, R., Kimmel, G. L., Pitt, C. G., Wall, M. E., and Zweidinger, R., 1977, Biodegradable polymers for sustained drug delivery, in: Contemporary Topics in Polymer Science, Vol. 2 (E. M. Pearce and J. R. Schaefgen, eds.), Plenum Press, New York, pp. 251–289.

    Chapter  Google Scholar 

  • Stieneker, F., Kreuter, J., and Lower, J., 1991, High antibody titres in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines, AIDS 5:431–435.

    Article  PubMed  CAS  Google Scholar 

  • Stieneker, F., Lower, J., and Kreuter, J., 1993, Different kinetics of the humoral immune response to inactivated HIV-1 and HIV-2 in mice: Modulation by PMMA nanoparticle adjuvant, Vaccine Res. 2:111–118.

    CAS  Google Scholar 

  • Stieneker, F., Kersten, G., van Bloois, L., Crommelin, D. J. A., Hem, S. L., Lower, J., and Kreuter, J., 1995, Comparison of 24 different adjuvants for inactivated HIV-2 split whole virus as antigen in mice: Induction of titres of antibodies and toxicity of the formulations, Vaccine (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kreuter, J. (1995). Nanoparticles as Adjuvants for Vaccines. In: Powell, M.F., Newman, M.J. (eds) Vaccine Design. Pharmaceutical Biotechnology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1823-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1823-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5737-7

  • Online ISBN: 978-1-4615-1823-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics