Vaccine Design pp 313-324 | Cite as

Development of an Emulsion-Based Muramyl Dipeptide Adjuvant Formulation for Vaccines

  • Deborah M. Lidgate
  • Noelene E. Byars
Part of the Pharmaceutical Biotechnology book series (PBIO, volume 6)


This chapter contains a summary of the development of a very effective adjuvant that contains a muramyl dipeptide (MDP) analogue (threonyl-MDP, temurtide) in an oil-inwater emulsion vehicle. The oil-in-water emulsion system contains squalane, Pluronic® LI21, and polysorbate 80 in an isotonic, pH 7.4, phosphate-buffered saline solution. This adjuvant elicits both cell-mediated and humoral immune responses. While threonyl-MDP serves to increase antibody production and cell-mediated responses, the emulsion vehicle enhances immunogenicity by facilitating presentation of antigens to responding lymphocytes. Because threonyl-MDP does not exhibit toxicity usually associated with alanyl-MDP (pyrogenicity, uveitis, adjuvant-induced arthritis), no safety concerns are anticipated at therapeutic doses. In several animal species, this vehicle proved safe and efficacious, having been used successfully with a variety of antigens.


United States Pharmacopeia Adjuvant Activity Muramyl Dipeptide Plasma Cell Neoplasm Excipient Emulsifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, A. C., and Byars, N. E., 1986, An adjuvant formulation that selectively elicits the formation of antibodies of protective isotype and of cell-mediated immunity, J. Immunol Methods 95:157–168.PubMedCrossRefGoogle Scholar
  2. Allison, A. C., and Byars, N. E., 1990, Adjuvant formulations and their mode of action, Semin. Immunol. 2:369–374.PubMedGoogle Scholar
  3. Allison, A. C., and Byars, N. E., 1992, Syntex Adjuvant Formulation, Res. Immunol. 143:519–525.PubMedCrossRefGoogle Scholar
  4. Arden, N. H., Patriarca, P. A., and Kendal, A. P., 1986, Experiences in the use and efficacy of inactivated influenza vaccine in nursing homes, in: Options for Control of Influenza (A. P. Kendal and P. A. Patriarca, eds.), Liss, New York, pp. 155–168.Google Scholar
  5. Avallone, H. L., 1985, Control aspects of aseptically produced products, J. Parenteral Sci. Technol. 39:75–79.Google Scholar
  6. Boyd, J., Parkinson, C., and Sherman, P., 1972, Factors affecting emulsion stability, and the HLB concept, J. Colloid Interface Sci. 41:359–370.CrossRefGoogle Scholar
  7. Byars, N. E., Allison, A. C., Harmon, M. W., and Kendal, A. P., 1990, Enhancement of antibody responses to influenza B virus hemagglutinin by use of a new adjuvant formulation, Vaccine 8:49–56.PubMedCrossRefGoogle Scholar
  8. Byars, N. E., Nakano, G., Welch, M., Lehman, D., and Allison, A. C., 1991a, Improvement of hepatitis B vaccine by the use of a new adjuvant, Vaccine 9:309–318.PubMedCrossRefGoogle Scholar
  9. Byars, N. E., Nakano, G., Welch M., and Allison, A. C., 1991b, Use of Syntex adjuvant formulation to enhance immune responses to viral antigens, in: Vaccines (G. Gregoriadis, A. C. Allison, and G. Poste, eds.), Plenum Press, New York, pp. 33–42.CrossRefGoogle Scholar
  10. Byars, N. E., Fraser-Smith, E. B., Pecyk, R. A., Welch, M., Nakano, G., Burke, R. L., Hayward, A. R., and Allison, A. C., 1994, Vaccinating guinea pigs with recombinant glycoprotein D of herpes simplex virus in an efficacious adjuvant formulation elicits protection against vaginal infection, Vaccine 12:200–209.PubMedCrossRefGoogle Scholar
  11. Campbell, M. J., Esserman, L., Byars, N. E., Allison, A. C., and Levy, R., 1990, Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor immunity, J. Immunol. 145:1029–1036.PubMedGoogle Scholar
  12. Chan, T. W., and Becker, A., 1988, Formulation of vaccine adjuvant muramyldipeptides (MDP). 1. Characterization of amorphous and crystalline forms of a muramyldipeptide analogue, Pharm. Res. 5:523–527.PubMedCrossRefGoogle Scholar
  13. Chattopadhyay, P., Kaveri, S.-V., Byars, N. E., Starkey, J., Ferrone, S., and Raychauduri, S., 1991, Human high molecular weight melanoma associated antigen mimicry by an anti-idiotypic antibody: Characterization of the immunogenicity and the immune response to the mouse monoclonal antibody I Mel-1, Cancer Res. 51:6045–6051.PubMedGoogle Scholar
  14. Ellouz, F., Adams, A., Ciorbaru, R., and Lederer, E., 1974, Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives, Biochem. Biophys. Res. Commun. 59:1317–1325.PubMedCrossRefGoogle Scholar
  15. Fraser-Smith, E. B., Waters, R. V., and Matthews, T. R., 1982, Correlation between in vivo anti-pseudomonas and anti-candida activities and clearance of carbon by the reticuloendothelial system for various muramyl dipeptide analogues, using normal and immunosuppressed mice, Infect. Immun. 35:105–110.PubMedGoogle Scholar
  16. Girard, M., Kieny, M.-P., Pinter, A., Barre-Sinoussi, F., Nara, P., Kolbe, H., Kusumi, K., Chaput, A., Reinhardt, T., Muchmore, E., Ronco, J., Kaczorek, M., Gomard, E., Gluckman, J.-C., and Fultz, P. N., 1991, Immunization of chimpanzees confers protection against challenge with human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 88:542–546.PubMedCrossRefGoogle Scholar
  17. Hunter, R. L., and Bennett, B., 1984, The adjuvant activity of nonionic block polymer surfactants. II. Antibody formation and inflammation related to the structure of triblock and octablock copolymers, J. Immunol. 133:3167–3175.PubMedGoogle Scholar
  18. Hunter, R. L., and Bennett, B., 1986, The adjuvant activity of nonionic block polymer surfactants. III. Characterization of selected biologically active surfaces, Scand. J. Immunol. 23:287–300.PubMedCrossRefGoogle Scholar
  19. Hunter, R., Strickland, F., and Kedzy, F., 1981, The adjuvant activity of nonionic block polymer surfactants. 1. Role of hydrophile-lipophile balance, J. Immunol. 127:1244–1250.PubMedGoogle Scholar
  20. Hunter, R., Olsen, M., and Buynitzky, S., 1991, Adjuvant activity of nonionic block copolymers. IV. Effect of molecular weight and formulation on titer and isotype of antibody, Vaccine 9:250–256.PubMedCrossRefGoogle Scholar
  21. Kenney, J. S., Hughes, B. W., Masada, M. P., and Allison, A. C., 1989, Influence of adjuvants on the quantity, affinity, isotype, and epitope specificity of murine antibodies, J. Immunol. Methods 121:157–166.PubMedCrossRefGoogle Scholar
  22. Lidgate, D. M., Fu, R. C., Byars, N. E., Foster, L. C., and Fleitman, J. S., 1989a, Formulation of vaccine adjuvant muramyldipeptides. III. Processing optimization, characterization, and bioactivity of an emulsion vehicle, Pharm Res. 6:748–752.PubMedCrossRefGoogle Scholar
  23. Lidgate, D. M., Fu, R. C., and Fleitman, J. S., 1989b, Using a Microfluidizer to manufacture parenteral emulsions, Biopharm 2:28–33.Google Scholar
  24. Lidgate, D. M., Trattner, T., Shultz, R. M., and Maskiewicz, R., 1992, Sterile filtration of a parenteral emulsion, Pharm. Res. 9:860–863.PubMedCrossRefGoogle Scholar
  25. Morgan, A. J., Allison, A. C., Finerty, S., Scullion, F. T., Byars, N. E., and Epstein, M. A., 1989, Validation of a first generation Epstein-Barr virus vaccine preparation suitable for human use, J. Med. Virol. 24:74–78.CrossRefGoogle Scholar
  26. Murphy-Corb, M., Martin, L. N., Davison-Fairburn, B., Montclaro, R. C., Miller, M., West, M., Ohkawa, S., Baskin, G. B., Zhang, J.-Y., Allison, A. C., and Eppstein, D. A., 1989, A formalin-inactivated whole SIV vaccine confers protection in macaques, Science 246:1293–1297.CrossRefGoogle Scholar
  27. Murray, R., Cohen, P., and Hardegree, M. C., 1972, Mineral oil adjuvants: Biological and chemical studies, Ann. Allergy 30:146–151.PubMedGoogle Scholar
  28. Potter, M., and Boyce, C. R., 1962, Induction of plasma cell neoplasms in strain BALB/c mice with mineral oil and mineral oil adjuvants, Nature 193:1086–1087.PubMedCrossRefGoogle Scholar
  29. Powell, M. F., Foster, L. C., Becker, A. R., and Lee, W., 1988, Formulation of vaccine adjuvant muramyldipeptides (MDP). 2. The thermal reactivity and pH of maximum stability of MDP compounds in aqueous solution, Pharm. Res. 5:528–532.PubMedCrossRefGoogle Scholar
  30. Prince, L., 1967, A theory of aqueous emulsions. I. Negative interfacial tension at the oil/water interface, J. Colloid Interface Sci. 23:165–173.CrossRefGoogle Scholar
  31. Prince, L., 1969, A theory of aqueous emulsion. II. Mechanism of film curvature at the oil/water interface, J. Colloid Interface Sci. 29:216–221.PubMedCrossRefGoogle Scholar
  32. Waters, R. V., Terrell, T. G., and Jones, G. H., 1986, Uveitis induction in the rabbit by muramyl dipeptides, Infect. Immun. 51:816–825.PubMedGoogle Scholar
  33. Woodard, L. F., and Jasman, R. L., 1985, Stable oil-in-water emulsions: Preparation and use as vaccine vehicles for lipophilic adjuvants, Vaccine 3:137–144.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Deborah M. Lidgate
    • 1
  • Noelene E. Byars
    • 1
  1. 1.Syntex ResearchPalo AltoUSA

Personalised recommendations