Kodaira-Spencer Theory of Gravity

  • Michael Bershadsky
Part of the NATO ASI Series book series (NSSB, volume 328)


We briefly review the topological model on Calabi-Yau 3-fold coupled to gravity. We discuss the Kodaira-Spencer Theory of Gravity which is equivalent to topological B-model on Calabi-Yau 3-fold and may be viewed as the closed string analog of Chern-Simons Theory.


Modulus Space Topological String Hodge Structure Ghost Number Massless Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Witten, Chern-Simons Gauge Theory as a String Theory, IASSNS-HEP-92/45, hep-th/9207094.Google Scholar
  2. [2]
    B. Gato-Rivera and A.M. Semikhatov, Phys. Lett. B293 (1992) 72–80.MathSciNetADSGoogle Scholar
  3. [3]
    M. Bershadsky, W. Lerche, D. Nemeschansky, N.P. Warner, Nucl. Phys. B401 (1993) 304.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. Witten, Nucl. Phys. B340 (1990) 281 R. Dijkgraaf and E. Witten, Nucl. Phys. B342 (1990) 486.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Verlinde and H. Verlinde, Nucl. Phys. B348 (1991) 457.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K. Li, Nucl. Phys. B354 (1991) 725-739.ADSCrossRefGoogle Scholar
  7. [7]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes, HUTP-93/A025.Google Scholar
  8. [8]
    K. Kodaira and D.C. Spencer, Annals of Math. 67 (1958) 328 K. Kodaira, L. Niremberg and D.C. Spencer, Annals of Math. 68 (1958) 450 K. Kodaira and D.C. Spencer, Acta Math. 100 (1958) 281 K. Kodaira and D.C. Spencer, Annals of Math. 71 (1960) 43.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    G. Tian, in Essays on Mirror manifolds, ed. by S. T. Yau, International Press, 1992 G. Tian, in Mathematical aspects of String theory, ed. by S. T. Yau, World Scientific, Singapore, 1987.Google Scholar
  10. [10]
    G. Tian, private communication.Google Scholar
  11. [11]
    A.N. Todorov, Comm. Math. Phys. 126 (1989) 325.MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    P. Griffiths and J. Harris Principles of Algebraic Geometry New York, Wiley, 1978.MATHGoogle Scholar
  13. [13]
    M. Kuranishi, Annals of Math 75 (1962) 536.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    D.B. Ray and I.M. Singer, Ann. Math. 98 (1973) 154.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    J.M. Bismut and D.S. Freed, Comm. Math. Phys. 106 (1986) 159; 107 (1986) 103 J.M. Bismut, H. Gillet and C. Soule, Comm. Math. Phys. 115 (1988) 49, 79, 301.MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Nicl. Phys. B405 (1993) 279.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    B. Zwiebach, Closed String Field Theory: Quantum Action and the B-V Master equation, IASSNS-HEP-92/41, MIT-CTP-2102, hep-th/9206084.Google Scholar
  18. [18]
    I. A. Batalin and G. A. Vilkovisky, Phys. Rev D28 (1983) 2567.MathSciNetADSGoogle Scholar
  19. [19]
    M. Henneaux, Lectures on the antifield-BRST formalism for gauge theories, Proc. of XXII GIFT Meeting.Google Scholar
  20. [20]
    E. Witten, Quantum Background Independence in String Theory.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael Bershadsky
    • 1
  1. 1.Lyman LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations