Skip to main content

Linear Systems for 2D Poincaré Supergravities

  • Chapter
Book cover Quantum Field Theory and String Theory

Part of the book series: NATO ASI Series ((NSSB,volume 328))

  • 456 Accesses

Abstract

This contribution contains a summary of [1], which generalizes the linear systems that were derived already some time ago for the dimensionally reduced field equations of Einstein Yang-Mills theories [2, 3] and their locally supersymmetric extensions [4, 5]. These reductions correspond to solutions of the field equations, which depend on two coordinates only and thus possess at least two commuting Killing vectors. The construction of [1] differs from earlier treatments, which were all based on the (super) conformai gauge, in that it allows for non-trivial topologies of the two dimensional world sheets by taking into account the topological degrees of freedom of the world sheet, i.e. its moduli and supermoduli. These constitute extra physical (but non-propagating) degrees of freedom not present in the corresponding flat space integrable sigma models, and affect the dynamics in a non-trivial fashion. In particular, there is a “back reaction” of the matter fields on the topological degrees of freedom, in contrast to conformai field theories, where the moduli determining the background can be freely chosen. The spectral parameter t entering the linear system is now not only a function of the “dilaton” field as in [3, 4], but also depends on the moduli and super-moduli of the world sheet. It is subject to a pair of differential equations, whose integrability condition yields one of the equations of motion obtained by dimensional reduction of Einstein’s equations. Apart from these intriguing new structures, an important motivation for investigating the 2d supergravity models is the search for new symmetries generalizing the Geroch group [6] and the “hidden symmetries” of dimensionally reduced supergravities [7, 8, 9]. The results obtained in [1] indicate that, if such extensions of the Geroch group exist, they are likely to involve the topological degrees of freedom. It should be stressed, however, that even for the known classes of solutions, the global structure of the Geroch group is not fully understood (see [3] for a discussion).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Nicolai, New Linear systems for 2D Poincaré Supergravities, preprint DESY 93-122 (1993), hep-th 9309052.

    Google Scholar 

  2. D. Maison, Phys. Rev. Lett. 41 (1978) 521; V.A. Belinskii and V.E. Zakharov, Zh. Eksp. Teor. Fiz. 75 (1978) 1955; 77 (1979) 3.

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Breitenlohner and D. Maison, Ann. Inst. Poincaré 46 (1987) 215.

    MathSciNet  MATH  Google Scholar 

  4. H. Nicolai, Phys. Lett. 194B (1987) 402; H. Nicolai and N.P. Warner, Commun. Math. Phys. 125 (1989) 384.

    MathSciNet  ADS  Google Scholar 

  5. H. Nicolai, in Recent Aspects of Quantum Fields, Proceedings, Schladming 1991, eds. H. Mitter and H. Gausterer, Springer Verlag, 1991.

    Google Scholar 

  6. R. Geroch, J. Math. Phys. 12 (1971) 918, 13 (1972) 394.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. E. Cremmer, S. Ferrara and J. Scherk, Phys.Lett. B74 (1978) 61; E. Cremmer and B. Julia, Nucl.Phys. B159 (1979) 141.

    ADS  Google Scholar 

  8. B. Julia, in Superspace and Supergravity, eds. S.W. Hawking and M. Rocek, Cambridge University Press, 1980.

    Google Scholar 

  9. B. Julia, in Unified Theories and Beyond, Proc. 5th Johns Hopkins Workshop on Current Problems in Particle Theory, Johns Hopkins University, Baltimore, 1982; in Vertex Operators in Mathematics and Physics, eds. J. Lepowsky, S. Mandelstam and I. Singer, Springer Verlag, Heidelberg, 1984.

    Google Scholar 

  10. B. de Wit, H. Nicolai and A. Tollsten, Nucl. Phys. B392 (1993) 3.

    Article  ADS  Google Scholar 

  11. K. Khan and R. Penrose, Nature 229 (1970) 286; V. Ferrari and J. Ibanez, Gen. Rel. Grav. 19 (1987) 405.

    Google Scholar 

  12. B. de Wit, M. Grisaru, E. Rabinovici and H. Nicolai, Phys. Lett. B286 (1992) 78.

    ADS  Google Scholar 

  13. L. Baulieu and M. Bellon, Phys. Lett. 196B (1987) 142.

    MathSciNet  ADS  Google Scholar 

  14. R. Dick, Chirat Fields on Riemann Surfaces and String Vertices, Thesis (Hamburg University, 1990); Lett. Math. Phys. 18 (1989) 67; Fortschr. Physik 40 (1992) 519.

    Google Scholar 

  15. M. Knecht, S. Lazzarini and R. Stora, Phys. Lett. 262B (1991) 25; 273B (1991) 63.

    MathSciNet  ADS  Google Scholar 

  16. E. Verlinde and H. Verlinde, Phys. Lett. 192B (1987) 95; J. Atick, G. Moore and A. Sen, Nucl. Phys. B307 (1988) 221, B308 (1988) 1.

    MathSciNet  ADS  Google Scholar 

  17. N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, Princeton NJ, 1951.

    Google Scholar 

  18. A. R. Cooper, L. Susskind and L. Thorlacius, Nucl. Phys. B363 (1993) 132.

    MathSciNet  ADS  Google Scholar 

  19. N. Marcus and J. Schwarz, Nucl. Phys. B228 (1983) 145.

    Article  MathSciNet  ADS  Google Scholar 

  20. J.L. Gervais and B. Sakita, Nucl. Phys. B34 (1971) 632.

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Friedan and S. Shenker, Nucl. Phys. B281 (1987) 509.

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Kornhass, Klassische Erhaltungsgrössen auf verzweigten Stringtrajektorien der Nambu-Goto Theorie, Thesis (Freiburg University, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nicolai, H. (1995). Linear Systems for 2D Poincaré Supergravities. In: Baulieu, L., Dotsenko, V., Kazakov, V., Windey, P. (eds) Quantum Field Theory and String Theory. NATO ASI Series, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1819-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1819-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5735-3

  • Online ISBN: 978-1-4615-1819-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics