Lagrangian Stochastic Dispersion Modelling for Varying Boundary Layer Stabilities

  • Mathias Rotach
  • Sven-Erik Gryning
  • Caterina Tassone
Part of the NATO · Challenges of Modern Society book series (NATS, volume 18)


In a given flow field the particle velocities are modelled as a Markov process, i.e., through the following stochastic differential equation
$${u_i} = {a_i}\left( {\operatorname{x} ,\operatorname{u} ,t} \right)dt + {b_{ij}}d{\xi _j},{\text{ }}d\operatorname{x} = \operatorname{u} \cdot dt$$


Stochastic Differential Equation Convective Boundary Layer Boundary Layer Stability Boundary Layer Height Plume Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Luhar, A.L. and Britter, R.E.: 1989, ‘A Random Walk Model for Dispersion in Inhomogeneous Turbulence in a Convective Boundary Layer’, Atmos. Environ., 23, 1911–1924.CrossRefGoogle Scholar
  2. Mason, P.J.: 1992: ‘Large-Eddy Simulation of Dispersion in Convective Boundary Layers with Wind Shear’, Atmos.Env,iron 26A, 1561–1571.CrossRefGoogle Scholar
  3. Tassone, C; Gryning, S.-E. and Rotach, M.W.: 1993, ‘A Random-walk Model for Atmospheric Dispersion in the Daytime Boundary Layer’, Proceedings of the 20th Int. Technical Meeting on Air Pollution Modelling and its Applications, Nov, 29 -Dec 3, Valencia, Spain.Google Scholar
  4. Thomson, D.J.: 1987: ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech., 180, 529–556.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Mathias Rotach
    • 1
    • 2
  • Sven-Erik Gryning
    • 1
  • Caterina Tassone
    • 1
  1. 1.Risø National LaboratoryRoskildeDenmark
  2. 2.Swiss Federal Institute of TechnologyGGIETHZürichSwitzerland

Personalised recommendations