Lagrangian Stochastic Dispersion Modelling for Varying Boundary Layer Stabilities

  • Mathias Rotach
  • Sven-Erik Gryning
  • Caterina Tassone
Part of the NATO · Challenges of Modern Society book series (NATS, volume 18)

Abstract

In a given flow field the particle velocities are modelled as a Markov process, i.e., through the following stochastic differential equation
$${u_i} = {a_i}\left( {\operatorname{x} ,\operatorname{u} ,t} \right)dt + {b_{ij}}d{\xi _j},{\text{ }}d\operatorname{x} = \operatorname{u} \cdot dt$$
(1)

Keywords

Prep 

References

  1. Luhar, A.L. and Britter, R.E.: 1989, ‘A Random Walk Model for Dispersion in Inhomogeneous Turbulence in a Convective Boundary Layer’, Atmos. Environ., 23, 1911–1924.CrossRefGoogle Scholar
  2. Mason, P.J.: 1992: ‘Large-Eddy Simulation of Dispersion in Convective Boundary Layers with Wind Shear’, Atmos.Env,iron 26A, 1561–1571.CrossRefGoogle Scholar
  3. Tassone, C; Gryning, S.-E. and Rotach, M.W.: 1993, ‘A Random-walk Model for Atmospheric Dispersion in the Daytime Boundary Layer’, Proceedings of the 20th Int. Technical Meeting on Air Pollution Modelling and its Applications, Nov, 29 -Dec 3, Valencia, Spain.Google Scholar
  4. Thomson, D.J.: 1987: ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech., 180, 529–556.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Mathias Rotach
    • 1
    • 2
  • Sven-Erik Gryning
    • 1
  • Caterina Tassone
    • 1
  1. 1.Risø National LaboratoryRoskildeDenmark
  2. 2.Swiss Federal Institute of TechnologyGGIETHZürichSwitzerland

Personalised recommendations